scholarly journals Probability-Based Customizable Modeling and Simulation of Protective Devices in Power Distribution Systems

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 199
Author(s):  
Chengwei Lei ◽  
Weisong Tian

Fused contactors and thermal magnetic circuit breakers are commonly applied protective devices in power distribution systems to protect the circuits when short-circuit faults occur. A power distribution system may contain various makes and models of protective devices, as a result, customizable simulation models for protective devices are demanded to effectively conduct system-level reliable analyses. To build the models, thermal energy-based data analysis methodologies are first applied to the protective devices’ physical properties, based on the manufacturer’s time/current data sheet. The models are further enhanced by integrating probability tools to simulate uncertainties in real-world application facts, for example, fortuity, variance, and failure rate. The customizable models are expected to aid the system-level reliability analysis, especially for the microgrid power systems.

Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 334
Author(s):  
Esteban Pulido ◽  
Luis Morán ◽  
Felipe Villarroel ◽  
José Silva

In this paper, a new concept of short-circuit current (SCC) reduction for power distribution systems is presented and analyzed. Conventional fault current limiters (FCLs) are connected in series with a circuit breaker (CB) that is required to limit the short-circuit current. Instead, the proposed scheme consisted of the parallel connection of a current-controlled power converter to the same bus intended to reduce the amplitude of the short-circuit current. This power converter was controlled to absorb a percentage of the short-circuit current from the bus to reduce the amplitude of the short-circuit current. The proposed active short-circuit current reduction scheme was implemented with a cascaded H-bridge power converter and tested by simulation in a 13.2 kV industrial power distribution system for three-phase faults, showing the effectiveness of the short-circuit current attenuation in reducing the maximum current requirement in all circuit breakers connected to the same bus. The paper also presents the design characteristics of the power converter and its associated control scheme.


2015 ◽  
Vol 16 (2) ◽  
pp. 232
Author(s):  
Raja Masood Larik ◽  
Mohd Wazir Mustafa

<span style="line-height: 107%; font-family: 'Arial',sans-serif; font-size: 9pt; mso-fareast-font-family: Calibri; mso-fareast-theme-font: minor-latin; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;" lang="EN-US">Recently, the debate has been going on about the role of power plus distribution systems, its technologies for future smart grids in power systems. The emerging of new technologies in smart grid and power distribution systems provide a significant change in terms of reduction the commercial and technical losses, improve the rationalization of electricity tariff. The new technologies in smart grid systems have different capabilities to increase the technological efficiency in power distribution systems. These new technologies are the foreseeable solution to address the power system issues. This paper gives a brief detail of new technologies in smart grid systems for its power distribution systems, benefits and recent challenges. The paper provides a brief detail for new researchers and engineers about new technologies in smart grid systems and how to change traditional distribution systems into new smart systems.</span>


Mathematics ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 158
Author(s):  
Farzaneh Pourahmadi ◽  
Payman Dehghanian

Allocation of the power losses to distributed generators and consumers has been a challenging concern for decades in restructured power systems. This paper proposes a promising approach for loss allocation in power distribution systems based on a cooperative concept of game-theory, named Shapley Value allocation. The proposed solution is a generic approach, applicable to both radial and meshed distribution systems as well as those with high penetration of renewables and DG units. With several different methods for distribution system loss allocation, the suggested method has been shown to be a straight-forward and efficient criterion for performance comparisons. The suggested loss allocation approach is numerically investigated, the results of which are presented for two distribution systems and its performance is compared with those obtained by other methodologies.


DYNA ◽  
2015 ◽  
Vol 82 (192) ◽  
pp. 141-149 ◽  
Author(s):  
Andres Felipe Panesso-Hernández ◽  
Juan Mora-Flórez ◽  
Sandra Pérez-Londoño

<p>The impedance-based approaches for fault location in power distribution systems determine a faulted line section. Next, these require of the estimation of the voltages and currents at one or both section line ends to exactly determine the fault location. It is a challenge because in most of the power distribution systems, measurements are only available at the main substation.  This document presents a modeling proposal of the power distribution system and an easy implementation method to estimate the voltages and currents at the faulted line section, using the measurements at the main substation, the line, load, transformer parameters and other serial and shunt connected devices and the power system topology. The approach here proposed is tested using a fault locator based on superimposed components, where the distance estimation error is lower than 1.5% in all of the cases. </p>


2019 ◽  
Vol 217 ◽  
pp. 01020 ◽  
Author(s):  
Margarita Chulyukova ◽  
Nikolai Voropai

The paper considers the possibilities of increasing the flexibility of power distribution systems by real-time load management. The principles of the implementation of special automatic systems for this purpose are proposed. These systems enable some loads of specific consumers of the power distribution system switched to islanded operation to “shift” from the daily maximum to the minimum, which makes some generators available to connect certain essential consumers disconnected earlier by under-frequency load shedding system to the power system. The approach under consideration is illustrated by a power system with distributed generation.


2013 ◽  
Vol 860-863 ◽  
pp. 2007-2012 ◽  
Author(s):  
Xiao Meng ◽  
Neng Ling Tai ◽  
Yan Hu ◽  
Xia Yang

The failure current in resonant grounder power distribution system is small, so it is difficult to detect the fault feeder. This passage presents the equivalent circuit of resonant grounded system, and discusses the difference of electrical characteristics between faulty feeder and sound feeders by using shunt resistors. To reduce the influence of shunt resistors on the system and improve the detection sensitivity, it presents the method of shunting multi-level resistors, and it proves the sensitivity and reliability of this method by EMTP simulation.


Author(s):  
Reza Tajik

Nowadays, the utilization of renewable energy resources in distribution systems (DSs) has been rapidly increased. Since distribution generation (DG) use renewable resources (i.e., biomass, wind and solar) are emerging as proper solutions for electricity generation. Regarding the tremendous deployment of DG, common distribution networks are undergoing a transition to DSs, and the common planning methods have become traditional in the high penetration level. Indeed, in conformity with the voltage violation challenge of these resources, this problem must be dealt with too. So, due to the high penetration of DG resources and nonlinear nature of most industrial loads, the planning of DG installation has become an important issue in power systems. The goal of this paper is to determine the planning of DG in distribution systems through smart grid to minimize losses and control grid factors. In this regard, the present work intending to propose a suitable method for the planning of DSs, the key properties of DS planning problem are evaluated from the various aspects, such as the allocation of DGs, and planning, and high-level uncertainties. Also depending on these analyses, this universal literature review addressed the updated study associated with DS planning. In this work, an operational design has been prepared for a higher performance of the power distribution system in the presence of DG. Artificial neural network (ANN) has been used as a method for voltage monitoring and generation output optimization. The findings of the study show that the proposed method can be utilized as a technique to improve the process of the distribution system under various penetration levels and in the presence of DG. Also, the findings revealed that the optimal use of ANN method leads to more controllable and apparent DS.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
J. L. Guardado ◽  
F. Rivas-Davalos ◽  
J. Torres ◽  
S. Maximov ◽  
E. Melgoza

Network reconfiguration is an alternative to reduce power losses and optimize the operation of power distribution systems. In this paper, an encoding scheme for evolutionary algorithms is proposed in order to search efficiently for the Pareto-optimal solutions during the reconfiguration of power distribution systems considering multiobjective optimization. The encoding scheme is based on the edge window decoder (EWD) technique, which was embedded in the Strength Pareto Evolutionary Algorithm 2 (SPEA2) and the Nondominated Sorting Genetic Algorithm II (NSGA-II). The effectiveness of the encoding scheme was proved by solving a test problem for which the true Pareto-optimal solutions are known in advance. In order to prove the practicability of the encoding scheme, a real distribution system was used to find the near Pareto-optimal solutions for different objective functions to optimize.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wei Teng ◽  
Yuejiao Wang ◽  
Shumin Sun ◽  
Yan Cheng ◽  
Peng Yu ◽  
...  

DC power distribution systems will play an important role in the future urban power distribution system, while the charging and discharging requirements of electric vehicles have a great impact on the voltage stability of the DC power distribution systems. A robust control method based on H∞ loop shaping method is proposed to suppress the effect of uncertain integration on voltage stability of DC distribution system. The results of frequency domain analysis and time domain simulation show that the proposed robust controller can effectively suppress the DC bus voltage oscillation caused by the uncertain integration of electric vehicle, and the robustness is strong.


2020 ◽  
Author(s):  
Yubo Wang

The neutral grounding in power distribution system is an important aspect for earth fault protection, power supply reliability and safety. The performance varies greatly with different grounding methods by which the protective effect presents various results with identical impedance of single phase earth fault. Arguments for better neutral protection has been continued in the distribution field for decades, unfortunately, there is still not a conclusion due to the discussions lacking of a unified modelling or theory of neutral groundings. Thus, the understanding of neutral grounding in most countries differs considerably. Surprisingly solid/isolated grounding in some countries is still considered as a mainstream grounding method in today’s distribution grids, likewise, some utilities are still persisting on adopting resistance grounding to pursue to improve detection sensitivity and reliability, and so on. In this paper, a unified theory is proposed to shed light on the neutral groundings within one unprecedented modelling by which neutral groundings can be compared and evaluated quantitatively for the first time in the history of power distribution field perhaps.


Sign in / Sign up

Export Citation Format

Share Document