scholarly journals Chlorine Corrosion in a Low-Power Boiler Fired with Agricultural Biomass

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 382
Author(s):  
Danuta Król ◽  
Przemysław Motyl ◽  
Sławomir Poskrobko

The selection of appropriate heat-resistant materials which are at the same time resistant to atmospheres rich in chlorine and its compounds is one of the most important current construction problems in steel boiler elements when using biomass fuels of agricultural origin. In the research presented here, an area was identified in the furnace of a 10 kW boiler where there was a potential risk of chlorine corrosion. This zone was determined based on numerical analysis of the combustion process; it is the zone with the highest temperatures and where the gas atmosphere conducive to the formation of chlorine corrosion centers. Subsequently, tests were carried out in the process environment of the combustion chamber of a 10 kW boiler (the fuel was barley straw) by placing samples of eight construction materials in a numerically-designated zone. These included samples of steel (coal boiler St41K, heat-resistant H25T and H24JS, and heat-resistant valve 50H21G9N4) as well as intermetallic materials based on phases (FeAl, Fe3Al, NiAl, and Ni3Al). The samples remained in the atmosphere of the boiler furnace for 1152 h at a temperature of 750–900 °C. After this time, the surfaces of the samples were subjected to SEM microscopy and scanning analysis. The results showed that the St41K boiler steel was not suitable for operation under the assumed conditions, and that a thick layer of complex corrosion products was visible on its surface. The least amount of corrosion damage was observed for the samples of 50H21G9N4 steel and intermetallic materials.

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Petr Buryan

In this article, we focus on causes of formation of incrustations in fluidised bed boilers that result from combustion of biomass-containing energy-producing raw materials and can significantly limit the efficiency of the respective power equipment operation. We applied laboratory procedures followed for assessment of characteristic eutectics of mixtures of coal ashes, desulphurisation components (dolomite and limestone), and woodchip ashes. Our analysis proved that combustion of these (or similar) raw materials, accompanied by repeated heating and cooling of combustion and flue gas desulphurisation products, leads to the formation of unfavourable incrustations. These incrustations can grow up to several tens of centimetres in size, thereby significantly restricting the power equipment functionality. They arise due to incrust reheating that results in the formation of eutectics, which have lower melting temperatures than that during their first pass through the combustion process. The same holds for desulphuriation components themselves. Formation of these new eutectics can be attributed both to recycling of substances produced during the first pass through the furnace as well as to mixtures formed both from recycled materials and from components initially combusted in the boiler furnace.


2020 ◽  
Vol 864 ◽  
pp. 265-277
Author(s):  
Viacheslav Tarelnyk ◽  
Ievgen Konoplianchenko ◽  
Oksana Gaponova ◽  
Bogdan Sarzhanov

The work presented in this paper is devoted to the formation of thick-layer wear-resistant coatings by technologies based on electrospark alloying, an example of essential components hardening for the heavy-duty processing equipment operating under hydroabrasive wear conditions. The aim of the paper is to improve the manufacturing and repairing technologies for the helical surfaces of the screws made of 65Г, 30X13 and 40X steels and corrosion-resistant stainless steel 12X18H10T. The above aim has been achieved owing to applying the new environmentally friendly technologies for the formation of the surface layers, and also due to the choice of the surface layers that are most resistant against hydroabrasive wear, which choice being provided for by conducting the comparative tests on the samples made of the above said steel grades and strengthened in various ways. The analysis results of the hydroabrasive wear resistance of the samples made of steel and provided with protective coatings is presented.


2014 ◽  
Vol 1030-1032 ◽  
pp. 648-652
Author(s):  
Cai Ying Ban ◽  
Xu Ao Lu ◽  
Jian Meng Yang ◽  
Xu Ran ◽  
Feng Ying Liang

The purpose of this paper is to study the impact of furnace temperature and load after blending in lignite, based on CFD software FLUENT-6.3,this paper choose the appropriate geometry model and the physical and mathematical models, and numerical simulation of the different conditions 600MW supercritical once-through boiler blending lignite furnace combustion process is curried out. And through a 600MW supercritical coal-fired boiler furnace lignite blended performed sections thermodynamic calculation under different conditions, worked out the furnace flue gas temperature, CO, CO2concentration distribute trend and radiant heat each section surface heat load conditions. The specific amount were blended with 5%, 10%, 15%, 20% were not dried lignite and dried lignite 20% after five conditions. And obtained a conclusion is the temperature and radiation heating surface flue gas heat load in the overall trend under the various conditions.


Author(s):  
Stephen G. Deduck ◽  
David Suplicki

This paper focuses on recent advancements in the areas of imaging technology and flue gas temperature measurement which are providing new insights for plant engineers into combustion conditions and operation in Energy-from-Waste (EfW) facilities. The paper describes how Covanta Energy, an operator of over 30 EfW facilities and Enertechnix, a manufacturer of advanced combustion products and services, are developing new technologies in these following areas: Infra-red (IR) imaging using a mobile camera to provide active viewing of the boiler and combustion conditions; Digital recording of images of slagging, waste stream movement, and refractory inspection; Online inspection in back pass convection areas with a video camera that extends up to 20 feet into boiler. Furnace Exit Gas Temperature (FEGT) measurement integrating proven acoustic pyrometer technology to replace inherently inaccurate contact temperature methods such as thermocouples. The paper examines how each of these technologies is being introduced into EfW facilities operated by Covanta Energy. Actual results are used to evaluate the potential these new methods have for improving combustion, reducing maintenance costs and providing plant operators with useful tools for operating EfW facilities. Video images of the furnace and convection sections will be provided and discussed. FEGT data from comparative technologies is presented. The data is interpreted in order to compare the accuracy of the acoustic pyrometer measurement against other methods. Potential and determined benefits are presented and outlined. The paper attempts to provide a framework to help facilities understand the importance and impact of accurate FEGT measurement in the combustion process.


2021 ◽  
Vol 2088 (1) ◽  
pp. 012016
Author(s):  
V B Prokhorov ◽  
N E Fomenko ◽  
M V Fomenko

Abstract This paper describes the process of developing a simplified methodology for furnace aerodynamics during the development or modernization of combustion schemes with direct-flow burners. This technique is based on the use of numerical modeling of air movement and turbulence phenomena in the furnace volume and allows for a relatively short period of time to analyze a large number of options for the burners and nozzles location. This is its advantage in comparison with the use of experimental modeling or numerical simulation with combustion when analyzing a variety of schemes. The model was developed on the basis of validated results of combustion processes numerical simulation in the K-50 boiler furnace. The paper presents the results of calculations performed for several variants of the simplified methodology. For further use, the option that best corresponds to full-scale studies taking into account the fuel combustion process has been selected. The main states of the methodology are formulated.


2011 ◽  
Vol 696 ◽  
pp. 120-125
Author(s):  
Pascale Sotto Vangeli ◽  
Bo Ivarsson

Construction materials are exposed to aggressive high temperature environments and it is important for materials selection to identify the failure mechanism of corroded components. This paper describes work done at Outokumpu Avesta Research Centre, Sweden to diagnose the high temperature problems of two different stainless steel components. It describes how the severity of the corrosion was the result of interaction of a number of factors, and outlines the measures taken to alleviate the problems. The discussion highlights how heavy carburization could be a problem for the heat resistant grade 310S, used as construction material for tanks in charcoal production and how Cl-containing flue gases heavily corrode stainless steel.


2013 ◽  
Vol 10 (1) ◽  
pp. 73-90 ◽  
Author(s):  
Emilija Kisic ◽  
Vera Petrovic ◽  
Miroslav Jakovljevic ◽  
Zeljko Djurovic

This paper analyzes the control system of the combustion process and protection from explosions in the boiler furnace of thermal power plant using the techniques of control charts. The data from old and newly introduced system for measuring under-pressure differences in boiler furnace at unit B2, TE Nikola Tesla (TENT) Obrenovac, were analyzed. The signal of undepressure difference is used for boiler protection function in thermal power plant TENT B. The results that confirm the advantages of the newly introduced system of measurements are presented. A detailed discussion about the benefits and the shortcomings of the control charts application in industrial processes are given in the paper.


2020 ◽  
Vol 24 (2) ◽  
pp. 21-27
Author(s):  
Wiesław Denisiuk

AbstractThe paper presents the results of research on the mass and the energy potential of malting barley straw of the “Klas” variety. The research was designated on a 100 ha plantation located in Pojezierze Iławsko-Sztumskie region. Using the Yara N-Sensor processor, precise application of mineral fertilizers according to determined fertilization demand allowed increasing the grain yield by 26% and the straw biomass yield by 74% compared to the control sample. The resulting increase in bio-mass obtained in the form of straw impacts its possible partial use for energy purposes without negative effects on the environment. The tested energy value of malting barley straw as a function of moisture content allowed a conclusion that between 10 and 25% of water content the energy value drops from 13.1 to 7.4 GJ∙t−1. For an average water content of 15%, this yields an energy potential unit of 23.76 GJ∙ha−1. Following observations of the combustion process, it was concluded that barley straw cannot be used as a source of biomass for the large-scale power production since its ash melts at below 800ºC.


Sign in / Sign up

Export Citation Format

Share Document