scholarly journals Differential Analysis of Fault Currents in a Power Distribution Feeder Using abc, αβ0, and dq0 Reference Frames

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 526
Author(s):  
Edmilson Bermudes Rocha Junior ◽  
Oureste Elias Batista ◽  
Domingos Sávio Lyrio Simonetti

This paper proposes a methodology to monitor the instantaneous value of the current and its derivative in the abc, αβ0, and dq0 reference frames to act in the detection of fault current in medium-voltage distribution systems. The method employed to calculate the derivative was Euler’s, with processing sampling rates of 10, 50, 100, and 200 μs. Using the MATLAB/Simulink platform, fault situations were analyzed on a real feeder of approximately 1.1132 km in length, fed by an 11.4 kV source, composed of 26 unbalanced loads and modeled as constant power. The simulation results show that the detection occurred in the different fault situations implemented in the feeder and that the detection speed is related to the value of the processing sampling rate (PSR) used. Considering all fault situations and regardless of the PSR value used, the total average detection time was 49 µs. Besides that, the joint action of the detection system with the Thyristor Controlled Series Capacitor (TCSC) limited the fault current in each situation. The average detection time for each fault situation analyzed was below the typical time for a recloser to act, regardless of the reference adopted for the analysis.

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3917 ◽  
Author(s):  
Giovanni Artale ◽  
Antonio Cataliotti ◽  
Valentina Cosentino ◽  
Dario Di Cara ◽  
Salvatore Guaiana ◽  
...  

The evolution of modern power distribution systems into smart grids requires the development of dedicated state estimation (SE) algorithms for real-time identification of the overall system state variables. This paper proposes a strategy to evaluate the minimum number and best position of power injection meters in radial distribution systems for SE purposes. Measurement points are identified with the aim of reducing uncertainty in branch power flow estimations. An incremental heuristic meter placement (IHMP) approach is proposed to select the locations and total number of power measurements. The meter placement procedure was implemented for a backward/forward load flow algorithm proposed by the authors, which allows the evaluation of medium-voltage power flows starting from low-voltage load measurements. This allows the reduction of the overall costs of measurement equipment and setup. The IHMP method was tested in the real 25-bus medium-voltage (MV) radial distribution network of the Island of Ustica (Mediterranean Sea). The proposed method is useful both for finding the best measurement configuration in a new distribution network and also for implementing an incremental enhancement of an existing measurement configuration, reaching a good tradeoff between instrumentation costs and measurement uncertainty.


1996 ◽  
Vol 11 (2) ◽  
pp. 940-945 ◽  
Author(s):  
S. Sugimoto ◽  
S. Neo ◽  
H. Arita ◽  
J. Kida ◽  
Y. Matsui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document