scholarly journals Measurement of Infrasound Components Contained in the Noise Emitted during a Working Wind Turbine

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 597
Author(s):  
Tomasz Boczar ◽  
Dariusz Zmarzły ◽  
Michał Kozioł ◽  
Łukasz Nagi ◽  
Daria Wotzka ◽  
...  

The research reported in this paper involves the development and refinement of methods applicable to the measurement and analysis of infrasound signals generated by the operation of wind turbines. In particular, the presentation focuses on the use of a new system that is applied for simultaneous recording of acoustic signals in the low-frequency range emitted by wind farms in three independent and identical measurement setups. A comparative analysis of the proposed new system was made with the Brüel & Kjaer measurement, a commonly used methodology, which meets the requirements of the IEC 61400-11 standard. The paper focuses on the results of frequency and time-frequency analysis of infrasound signals recorded throughout the operation of a wind turbine with a rated capacity of 2 MW. The use of a correlated system with three simultaneous measurement systems can be a new and alternative measurement method that will eliminate the drawbacks of previous approaches.

2013 ◽  
Vol 9 (S303) ◽  
pp. 458-460
Author(s):  
N. E. Kassim ◽  
S. D. Hyman ◽  
H. Intema ◽  
T. J. W. Lazio

AbstractAn upgrade of the low frequency observing system of the VLA developed by NRL and NRAO, called low band (LB), will open a new era of Galactic center (GC) transient monitoring. Our previous searches using the VLA and GMRT have revealed a modest number of radio-selected transients, but have been severely sensitivity and observing time limited. The new LB system, currently accessing the 236--492 MHz frequency range, promises ≥5 × improved sensitivity over the legacy VLA system. The new system is emerging from commissioning in time to catch any enhanced sub-GHz emission from the G2 cloud event, and we review existing limits based on recent observations. We also describe a proposed 24/7 commensal system, called the LOw Band Observatory (LOBO). LOBO offers over 100 VLA GC monitoring hours per year, possibly revealing new transients and helping validate ASTRO2010's anticipation of a new era of transient radio astronomy. A funded LOBO pathfinder called the VLA Low Frequency Ionosphere and Transient Experiment (VLITE) is under development. Finally, we consider the impact of LB and LOBO on our GC monitoring program.


2007 ◽  
Vol 102 (3) ◽  
pp. 1057-1064 ◽  
Author(s):  
Maya David ◽  
Michael Hirsch ◽  
Jacob Karin ◽  
Eran Toledo ◽  
Solange Akselrod

In this study we present a noninvasive method that enables the investigation of the fetal heart rate (FHR) fluctuations. The objective was to design a quantitative measurement to assess the fetal autonomic nervous system and to investigate its development as a function of the gestational age. Our Medical Physics group has developed a complex algorithm for online beat-to-beat detection of the fetal ECG (FECG), extracted from the maternal abdominal ECG signal. We used our previously acquired FECG data, which includes noninvasive recordings of 200 maternal abdominal ECG signals. From these, we chose 35 cases of healthy pregnancies that we divided into three groups according to gestational age: Group 1, 23 ± 2 wk; Group 2, 32 ± 1 wk; and Group 3, 39 ± 1 wk. The FHR variability was analyzed by a time-frequency decomposition based on a continuous wavelet transform. We showed that, independent of the gestational age, most of the FHR power is concentrated in the very-low-frequency range (0.02–0.08 Hz) and in the low-frequency range (0.08–0.2 Hz). In addition, there is power in the high-frequency range that correlates with the frequency range of fetal respiratory motion (0.4–1.7 Hz). In the intermediate-frequency range (0.2–0.4 Hz), the power is significantly smaller. The changes in the average power spectrum in relation to gestation time were carefully and quantitatively examined. The results imply that there is a neural organization during the last trimester of the pregnancy, and the sympathovagal balance is reduced with the gestational age.


2021 ◽  
Vol 12 (3) ◽  
pp. 452-458
Author(s):  
O. I. Dotsenko ◽  
А. М. Mischenko ◽  
G. V. Taradina

The early signs of vibration effects on the human body are microcirculation and transcapillary metabolism disorders, accompanied by disruption of the supply to and utilization of oxygen in the tissues and organs. However, there are few experimental studies aimed at finding targets of vibration in cells and determining the action mechanism of vibration. In in vitro experiments, human erythrocytes in buffer solution were exposed to low-frequency vibration (frequency range 8–32 Hz, amplitudes 0.5–0.9 mm) for 3 hours. The dynamics of the accumulation of membrane-bound catalase and hemoglobin and the distribution of ligand hemoglobin in the membrane-bound fraction were studied as the indicators of functional activity of cells. The choice of these indicators is justified by the participation of catalase and hemoglobin in O2-dependent cellular reactions as a part of protein complexes. Since pО2 is a trigger of conformational transitions in the hemoglobin molecule, simultaneously with oxygen transport, hemoglobin signals to different metabolic systems about oxygen conditions in the environment. The studies revealed that in the conditions of vibration, the activity of membrane-associated catalase increased by 40–50% in the frequency range of 12–24 Hz (amplitude 0.5 ± 0.04 mm), by 20–30% in the amplitude of 0.9 mm, but after about 100–120 min exposure the enzyme activity decreased even below the control level. There was a dose-dependent accumulation of membrane-bound hemoglobin during exposure to vibration. In the membrane-bound fraction of hemoglobin, oxyhemoglobin had the highest content (60–80%), while the content of methemoglobin varied 5–20%. During vibrations in the frequency range 12–28 Hz, 0.5 mm, we recorded 10–30% increase in oxyhemoglobin. With increase in the vibration amplitude (0.9 mm) in the frequency range of 16–32 Hz, constant content of oxyhemoglobin was noted at the beginning of the experiment, which tended to decrease during the last exposure time. Frequency of 32 Hz caused increase in the deoxyhemoglobin content in the membrane-bound fraction. The content of methemoglobin (metHb) in erythrocytes significantly increased during exposure to the frequency range of 12–24 Hz, with the amplitude of 0.5 mm (1.3–2.4 times). During the exposure to frequencies of 28 and 32 Hz, we observed the transition of methemoglobin to hemichrome. The content of methemoglobin in the cells was lower and decreased at the end of the experiment when the vibration amplitude was 0.9 mm. In these experimental conditions, no increase in hemichrome content in the membrane-bound fraction was recorded. Therefore, the degree of binding of catalase and hemoglobin with the membrane of erythrocytes that were exposed to vibration and the changes in the content of ligand forms in the composition of membrane-bound hemoglobin are dose-dependent. Low-frequency vibration initiates O2-dependent processes in erythrocytes. Targets of such an influence are nanobubbles of dissolved air (babstons), retained on the surface of erythrocytes due to Coulomb interactions, capable of coagulation and increase in size under the action of vibration. At first, the consequences of these processes are increase in oxygen content in the surface of erythrocytes, and then decrease as a result of degassing. Thus, increase in oxygen content on the surface initiates redox reactions, whereas decrease in oxygen content leads to reconstruction of metabolic processes oriented at overcoming hypoxia.


2018 ◽  
Vol 14 (4) ◽  
pp. 4-13
Author(s):  
Eunkuk Son ◽  
Gwang-Se Lee ◽  
Jinjae Lee ◽  
Seungjin Kang ◽  
Sungmok Hwang ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4725 ◽  
Author(s):  
Xiaolei Yang ◽  
Fotis Sotiropoulos

Meandering describes the large-scale, low frequency motions of wind turbine wakes, which could determine wake recovery rates, impact the loads exerted on turbine structures, and play a critical role in the design and optimal control of wind farms. This paper presents a comprehensive review of previous work related to wake meandering. Emphasis is placed on the origin and characteristics of wake meandering and computational models, including both the dynamic wake meandering models and large-eddy simulation approaches. Future research directions in the field are also discussed.


1971 ◽  
Vol 36 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Norman P. Erber

Two types of special hearing aid have been developed recently to improve the reception of speech by profoundly deaf children. In a different way, each special system provides greater low-frequency acoustic stimulation to deaf ears than does a conventional hearing aid. One of the devices extends the low-frequency limit of amplification; the other shifts high-frequency energy to a lower frequency range. In general, previous evaluations of these special hearing aids have obtained inconsistent or inconclusive results. This paper reviews most of the published research on the use of special hearing aids by deaf children, summarizes several unpublished studies, and suggests a set of guidelines for future evaluations of special and conventional amplification systems.


2018 ◽  
pp. 214-223
Author(s):  
AM Faria ◽  
MM Pimenta ◽  
JY Saab Jr. ◽  
S Rodriguez

Wind energy expansion is worldwide followed by various limitations, i.e. land availability, the NIMBY (not in my backyard) attitude, interference on birds migration routes and so on. This undeniable expansion is pushing wind farms near populated areas throughout the years, where noise regulation is more stringent. That demands solutions for the wind turbine (WT) industry, in order to produce quieter WT units. Focusing in the subject of airfoil noise prediction, it can help the assessment and design of quieter wind turbine blades. Considering the airfoil noise as a composition of many sound sources, and in light of the fact that the main noise production mechanisms are the airfoil self-noise and the turbulent inflow (TI) noise, this work is concentrated on the latter. TI noise is classified as an interaction noise, produced by the turbulent inflow, incident on the airfoil leading edge (LE). Theoretical and semi-empirical methods for the TI noise prediction are already available, based on Amiet’s broadband noise theory. Analysis of many TI noise prediction methods is provided by this work in the literature review, as well as the turbulence energy spectrum modeling. This is then followed by comparison of the most reliable TI noise methodologies, qualitatively and quantitatively, with the error estimation, compared to the Ffowcs Williams-Hawkings solution for computational aeroacoustics. Basis for integration of airfoil inflow noise prediction into a wind turbine noise prediction code is the final goal of this work.


2001 ◽  
Vol 29 (4) ◽  
pp. 258-268 ◽  
Author(s):  
G. Jianmin ◽  
R. Gall ◽  
W. Zuomin

Abstract A variable parameter model to study dynamic tire responses is presented. A modified device to measure terrain roughness is used to measure dynamic damping and stiffness characteristics of rolling tires. The device was used to examine the dynamic behavior of a tire in the speed range from 0 to 10 km/h. The inflation pressure during the tests was adjusted to 160, 240, and 320 kPa. The vertical load was 5.2 kN. The results indicate that the damping and stiffness decrease with velocity. Regression formulas for the non-linear experimental damping and stiffness are obtained. These results can be used as input parameters for vehicle simulation to evaluate the vehicle's driving and comfort performance in the medium-low frequency range (0–100 Hz). This way it can be important for tire design and the forecasting of the dynamic behavior of tires.


Author(s):  
Xu Pei-Zhen ◽  
Lu Yong-Geng ◽  
Cao Xi-Min

Background: Over the past few years, the subsynchronous oscillation (SSO) caused by the grid-connected wind farm had a bad influence on the stable operation of the system and has now become a bottleneck factor restricting the efficient utilization of wind power. How to mitigate and suppress the phenomenon of SSO of wind farms has become the focus of power system research. Methods: This paper first analyzes the SSO of different types of wind turbines, including squirrelcage induction generator based wind turbine (SCIG-WT), permanent magnet synchronous generator- based wind turbine (PMSG-WT), and doubly-fed induction generator based wind turbine (DFIG-WT). Then, the mechanisms of different types of SSO are proposed with the aim to better understand SSO in large-scale wind integrated power systems, and the main analytical methods suitable for studying the SSO of wind farms are summarized. Results: On the basis of results, using additional damping control suppression methods to solve SSO caused by the flexible power transmission devices and the wind turbine converter is recommended. Conclusion: The current development direction of the SSO of large-scale wind farm grid-connected systems is summarized and the current challenges and recommendations for future research and development are discussed.


Sign in / Sign up

Export Citation Format

Share Document