scholarly journals Aircraft Icing Severity Evaluation

Encyclopedia ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 56-69
Author(s):  
Sibo Li ◽  
Roberto Paoli

Aircraft icing refers to the ice buildup on the surface of an aircraft flying in icing conditions. The ice accretion on the aircraft alters the original aerodynamic configuration and degrades the aerodynamic performances and may lead to unsafe flight conditions. Evaluating the flow structure, icing mechanism and consequences is of great importance to the development of an anti/deicing technique. Studies have shown computational fluid dynamics (CFD) and machine learning (ML) to be effective in predicting the ice shape and icing severity under different flight conditions. CFD solves a set of partial differential equations to obtain the air flow fields, water droplets trajectories and ice shape. ML is a branch of artificial intelligence and, based on the data, the self-improved computer algorithms can be effective in finding the nonlinear mapping relationship between the input flight conditions and the output aircraft icing severity features.

2019 ◽  
Vol 18 (4) ◽  
pp. 413-421
Author(s):  
Ninh Cong Toan ◽  
Ngo Van He

In marine transportation, aerodynamic performance is important for the ships, especially for the small passenger fast ships. It has affected the service speed, air resistance acting on hull, power energy as well as roll, pitch, yaw and stability of the ships. Moreover, the aerodynamic performance also directly affects the passengers, captains or employments who work on the ships. For a bad aerodynamic performance hull shape, it may make an accident in marine transportation. In this paper, the authors present a study on effect of hull shape on aerodynamic performance of a small passenger fast ship by using a commercial Computational Fluid Dynamics (CFD). Several hull forms with different shapes are proposed and computed to show their aerodynamic performances. From the comparison between different CFD results of the ships, the effects of hull shape on aerodynamic performances of the ships  are understood.


Author(s):  
Baojie Liu ◽  
Jiaxin Liu ◽  
Xianjun Yu ◽  
Dejun Meng ◽  
Wenbin Shi

Abstract The results of previous studies have proved that manufacture variations can cause a noticeable influence on compressor aerodynamic performance. The main objective of this paper is to investigate the influence rules and mechanisms of manufacture variations on supersonic/transonic blades aerodynamic performance. The variations used in this study were measured from some newly manufactured high-pressure compressors. In the present study, several blade sections with different design Mach number conditions are selected for further statistical analysis of measured deviation data. Therefore, some systematic errors in the deviation data have been revealed. Based on these data, the computational fluid dynamics (CFD) method has been used to obtain the aerodynamic performances of a large number of the measured blade elements. And then, the analysis of the influence rules of manufacture variations on blade aerodynamic performance in different Mach number conditions has been carried out. The present results indicate that the effects of manufacture variations on blade aerodynamic performance in the lower Mach number (0.8) condition are much more significant comparing to that in the higher Mach number (0.9∼1.2) conditions. Based on this, influence mechanisms of manufacture variations on positive incidence range and negative incidence range have been analyzed. The differences of influence mechanisms in different Mach number conditions are the focus of research.


Author(s):  
Mohammad Ghalandari ◽  
Alireza Ziamolki ◽  
Amir Mosavi ◽  
Shahab Shamshirband ◽  
Kwok-Wing Chau

In this study, an optimization of the first blade in new test rig presented. Blade tuning is conducted using 3D geometrical parameters. Sweep and dihedral play an essential role in this study. Compressor characteristics and blades vibrational behavior are the main objective of the evaluation. Here, the attachments are designed to isolate blade dynamics from Disk. So, the Vibrational behaviors of the one's blade are tuned based on the self-excited and forced vibration phenomenon. Using a semi analytical MATLAB code instability conditions are satisfied. The code takes advantages of whitehead and force response theory to predict classically and stall flutter speeds. Beside, Forced vibrations instability is controlled using a theory presented by Campbell. Aerodynamics of new blade geometry determined using multistage simulations Computational fluid dynamics (CFD) software. Numerical results show increasing performance near the surge line and working interval along with increasing mass flow.


Author(s):  
T. Batuhan Korkut ◽  
Aytac Goren

This study focuses on the aerodynamic performances of two vehicles by Dokuz Eylul University Solaris Solar Car Project Team. The first vehicle (S7) is a solar-powered vehicle that is designed for World Solar Challenge and the second (D9) is an electric vehicle which is designed for Tubitak EV Challenge. Both vehicles are manufactured using polymer composites and challenged in mentioned races. In this research, a formal optimisation technique based on computational fluid dynamics (CFD) is used to determine the efficient aerodynamic structures under various scenarios. Results clearly show that strategists of the racing teams should take intoaccount the aerodynamic structure of the racing car. Especially before the races which based on efficiency, the apex line is determined, and mirrors should be replaced by back view camera.


2021 ◽  
Vol 21 (1) ◽  
pp. 37-46
Author(s):  
He Ngo Van ◽  
Thuan Truong Van

In this paper, we present a research on applying a commercial Computational Fluid Dynamics (CFD) code to determine interaction effect between hull and accommodation on wind drag of a container ship. For the high superstructure and large windward area ships such as container, wind drag acting on hull accounts for a large amount of total resistance. To clearly find aerodynamic performance and interaction effects on wind drag of a container ship, a full scale 1,200 TEU container has been used as a reference model. From results of comparison in the two computed cases of hull with and without accommodation, the interaction effects between hull and accommodation on aerodynamic performance and wind drag have been investigated. The targets of the paper has proposed a new solution to improve aerodynamic performances and reduce wind drag acting on the ship by reducing interaction effects between hull and accommodation.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Binyet Emmanuel ◽  
Wang Jun

The aim of the present paper is to investigate ways of improving the efficiency of a six-bladed Savonius rotor. The efficiency of Savonius machines is low because of the “negative drag” exerted on the convex part of the blades and also because the torque of standard Savonius rotors varies substantially during one rotation and therefore affects the self starting of the rotor at certain wind angles. Improvement of the efficiency of the Savonius rotor is carried out by increasing the number of blades and also by preventing the wind from impinging on the convex parts. The latter can be done by hiding the convex part of the blades behind a shield or a vane. The present paper shows the results of two-dimensional computational fluid dynamics (CFD) computations, indicating a promising increase of the power coefficient from 0.3 to 0.5.


2020 ◽  
Vol 8 (11) ◽  
pp. 930
Author(s):  
Ngo Van He ◽  
Ngo Van Hien ◽  
Van-Thuan Truong ◽  
Ngoc-Tam Bui

In this paper, we present our research on applying the commercial Computational Fluid Dynamics (CFD) code to investigate interaction effect between hull and accommodation on wind drag acting above the water hull surface of a full scale 1200 TEU container ship. With this purpose, aerodynamic performances and wind drag acting on the ship hull with and without accommodations have been computed. Analyzing the obtained CFD results, the interaction effect between hull and accommodation on aerodynamic performances and wind drag acting on the ship have been found. Various new accommodation shapes have been proposed for the original ship to reduce the interaction effect on wind drag. A drastic reduction in the interaction effect between hull and accommodation on wind drag acting on the ship has been achieved and the obtained results have been shown in this paper.


Sign in / Sign up

Export Citation Format

Share Document