scholarly journals Pore Network Modelling of Porous Media for Carbon Dioxide Sequestration: A Case Study of Pakistan

2021 ◽  
Vol 12 (1) ◽  
pp. 64
Author(s):  
Nadeem Ahmed Sheikh ◽  
Irfan Ullah ◽  
Muzaffar Ali

Carbon dioxide (CO2) storage in natural rocks is an important strategy for reducing and capturing greenhouse gas emissions in the atmosphere. The amount of CO2 stored in a natural reservoir such as natural rocks is the major challenge for any economically viable CO2 storage. The intricate nature of the porous media and the estimates of the replacement of residing aqueous media with the invading CO2 is the challenge. The current study uses MATLAB to construct a similar porous network model for simulation of complex porous storage. The model is designed to mimic the overall properties of the natural porous media in terms of permeability, porosity and inter-pore connectivity. Here a dynamic pore network is simulated and validated, firstly in the case of a porous network with one fluid invading empty network. Subsequently, the simulations for an invading fluid (CO2) capturing the porous media with filled aqueous brine solution are also carried out in a dynamic fashion. This resembles the actual storage process of CO2 sequestration in natural rocks. While the sensitivity analysis suggests that the differential pressure and porosity have a direct effect on saturation, increasing differential pressure or porosity increases the saturation of CO2 storage. The results for typically occurring rocks in Pakistan are also studies and related with the findings of the study.

2002 ◽  
Vol 25 (2) ◽  
pp. 307-315 ◽  
Author(s):  
Rodel D Lasco ◽  
Joveno S Lales ◽  
Ma.Theresa Arnuevo ◽  
Ina Q Guillermo ◽  
Agnes C de Jesus ◽  
...  

Author(s):  
J. S. Ellis ◽  
A. Ebrahimi ◽  
A. Bazylak

Sequestration of carbon dioxide in deep underground reservoirs has been discussed for the reduction of atmospheric greenhouse gas emissions in the short- to medium-term until more sustainable technologies are available. Cost and long-term stability are major factors in adoption, so techniques to improve the storage efficiency and trapping security are essential. Such improvements require modeling of the porous geological formations involved in the sequestration process, and comparison to both lab- and field-based experimental studies. To this end, we are developing a comprehensive, large-scale pore-network model to describe multi-phase flow in porous media, including the structural, dissolution, and mineral trapping regimes. To explore the optimal operating parameters for mineralization trapping, we describe a two-phase pore-network model of brine-saturated aquifers and model the invasion of supercritical carbon dioxide (CO2) into the pore structure. Regularly-aligned 2D and 3D pore networks are constructed, and rules-based transport models are used to characterize the saturation behavior over a range of viscosity and capillary parameters, and coordination numbers. Finally, saturation patterns are presented for model caprock and sandstone reservoir conditions, taking into account different contact angles for CO2 on mica and quartz at supercritical conditions. These saturation patterns demonstrate the importance of surface heterogeneities in pore-scale modeling of deep saline aquifers.


Author(s):  
A. Bazylak ◽  
V. Berejnov ◽  
B. Markicevic ◽  
D. Sinton ◽  
N. Djilali

Pore network modelling has traditionally been used to study displacement processes in idealized porous media related to geological flows, with applications ranging from groundwater hydrology to enhanced oil recovery. Very recently, pore network modelling has been applied to model the gas diffusion layer (GDL) of a polymer electrolyte membrane (PEM) fuel cell. Discrete pore network models have the potential to elucidate transport phenomena in the GDL with high computational efficiency, in contrast to continuum or molecular dynamics modelling that require extensive computational resources. However, the challenge in studying the GDL with pore network modelling lies in defining the network parameters that accurately describe the porous media as well as the conditions of fluid invasion that represent realistic transport processes. In this work, we discuss the first stage of developing and validating a GDL-representative pore network model. We begin with a two-dimensional pore network model with a single mobile phase invading a hydrophobic media, whereby the slow capillary dominated flow process follows invasion percolation. Pore network geometries are designed, and transparent hydrophobic microfluidic networks are fabricated from silicon elastomer PDMS using a soft lithography technique. These microfluidic networks are designed to have channel size distributions and wettability properties of typical GDL materials. Comparisons between the numerical and experimental flow patterns show reasonable agreement. Furthermore, the fractal dimension and saturation are measured during invasion, revealing different operating regimes that can be applied to GDL operation. Future work for model development will also be discussed.


2019 ◽  
Vol 128 (1) ◽  
pp. 271-301 ◽  
Author(s):  
Todor G. Baychev ◽  
Andrey P. Jivkov ◽  
Arash Rabbani ◽  
Ali Q. Raeini ◽  
Qingrong Xiong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document