scholarly journals Single Stage Active Power Factor Correction Circuit for Street LED Light with Battery Backup

2022 ◽  
Vol 12 (1) ◽  
pp. 69
Author(s):  
Asad Muneer ◽  
Ahsan Fayyaz ◽  
Shahid Iqbal ◽  
Muhammad Waqas Jabbar ◽  
Arslan Qaisar ◽  
...  

This paper introduces and uses a single-phase, high-power LED driver with a battery backup. The buck–boost converter and reverse converter are both combined to achieve optimal performance. In the first part of the integrated circuit, the buck–boost converter is simply used to adjust the power when operating in the non-continuous operating mode. The reverse converter provides free voltage to the LEDs when released as a remote DC–DC converter. The battery backup cycle directly charges the battery at the same power as the LED driver required and provides charging power when there is no electricity. This paper demonstrates the functionality of the entire system and proves that it is an effective solution for new lighting applications.

2019 ◽  
Vol 47 (9) ◽  
pp. 1529-1553 ◽  
Author(s):  
Alencar Franco de Souza ◽  
Enio Roberto Ribeiro ◽  
Eduardo Moreira Vicente ◽  
Fernando Lessa Tofoli

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1340
Author(s):  
Yih-Her Yan ◽  
Hung-Liang Cheng ◽  
Chun-An Cheng ◽  
Yong-Nong Chang ◽  
Zong-Xun Wu

A novel single-switch single-stage high power factor LED driver is proposed by integrating a flyback converter, a buck–boost converter and a current balance circuit. Only an active switch and a corresponding control circuit are used. The LED power can be adjusted by the control scheme of pulse–width modulation (PWM). The flyback converter performs the function of power factor correction (PFC), which is operated at discontinuous-current mode (DCM) to achieve unity power factor and low total current harmonic distortion (THDi). The buck–boost converter regulates the dc-link voltage to obtain smooth dc voltage for the LED. The current–balance circuit applies the principle of ampere-second balance of capacitors to obtain equal current in each LED string. The steady-state analyses for different operation modes is provided, and the mathematical equations for designing component parameters are conducted. Finally, a 90-W prototype circuit with three LED strings was built and tested. Experimental results show that the current in each LED string is indeed consistent. High power factor and low THDi can be achieved. LED power is regulated from 100% to 25% rated power. Satisfactory performance has proved the feasibility of this circuit.


Sign in / Sign up

Export Citation Format

Share Document