The Occurrence of Unfavorable Phenomena in Swimming Pool Water

2021 ◽  
Vol 9 (1) ◽  
pp. 38
Author(s):  
Anna Lempart-Rapacewicz ◽  
Edyta Kudlek ◽  
Mariusz Dudziak ◽  
Marta Dyrała

The study assessed unfavorable phenomena occurring in swimming pool water, including the occurrence of organic micropollutants in swimming pools and the transformation of these compounds during the swimming pool water treatment processes. The presence of three selected compounds was examined from the personal care products group (PCP) in pool water samples, collected in 2018 and 2019, from fifteen pools characterized using three different solutions of swimming pool water treatment systems. In addition, experimental studies on the effects of UV radiation and ozone on selected organic micropollutants, previously identified in swimming pools and the relationship between swimming pool water turbidity and the concentration of the selected PCP micropollutants, were carried out

Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 25 ◽  
Author(s):  
Anna Lempart ◽  
Edyta Kudlek ◽  
Mariusz Dudziak

The presented research assumes the implementation of experimental studies on the occurrence of organic micropollutants in the pool water environment. The main goal of this paper is to identify micropollutants in swimming pools and select the “priority substances” due to their frequency of occurrence, concentration levels and health effects. The presence of micropollutants in swimming pools showed in this research raises the question whether current methods of swimming pool water treatment provide such properties that do not pose a threat to the health of users.


1989 ◽  
Vol 21 (2) ◽  
pp. 151-160 ◽  
Author(s):  
D. E. J. Powick

A brief history of the development of swimming pool water treatment and management has been discussed, applicable to both large and small pools. An outline of typical bathing loads and current methods of water treatment has been presented with particular emphasis being given to disinfection. Chlorine has been the traditional sole disinfectant used since the 1920's but alternatives are continually being sought. Chief amongst the alternatives to date has been ozone, used in conjunction with chlorine. Ozone acts as a powerful oxidiser and disinfectant but has little residual effect. Chlorine is therefore used to provide a residual in the pool. Current British trends in pool design and treatment have been noted.


2013 ◽  
Vol 48 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Ping Lu ◽  
Tao Yuan ◽  
Qiyan Feng ◽  
Aiqin Xu ◽  
Jiayuan Li

In this paper, outbreaks of cryptosporidiosis in swimming pools in the last 20 years are summarized. Cryptosporidium oocysts are very resistant to many disinfectants, including chlorine, one of the most widely-used disinfectants in swimming pools. Ozone or UV is shown to inactivate Cryptosporidium, while not effective to newly introduced Cryptosporidium and bacteria because of no residual ozone or UV in the treated swimming pool water. Additionally, swimming pool sand filters or cartridge filters are not able to effectively remove Cryptosporidium (removal rate <50%). Above 99% Cryptosporidium removals are achieved in drinking water treatment, but swimming pool water treatment is different from drinking water treatment: no coagulation is performed prior to filtration in most US swimming pools, filtration rate is four to five times higher for swimming pool water treatment compared with drinking water treatment, and the input compounds and microorganisms from bathers continuously recirculate in the swimming pool. Moreover, up-to-date Cryptosporidium or Cryptosporidium surrogate removals from swimming pools are discussed, and alternative swimming pool treatment techniques are reviewed.


2000 ◽  
Vol 22 (6) ◽  
pp. 677-682 ◽  
Author(s):  
M. Bataller ◽  
E. Veliz ◽  
R. Pérez-Rey ◽  
L. A. Fernández ◽  
M. Gutierrez ◽  
...  

2018 ◽  
Vol 11 (3) ◽  
pp. 131-138
Author(s):  
Edyta KUDLEK ◽  
Anna LEMPART ◽  
Mariusz DUDZIAK ◽  
Marta BUJAK

2018 ◽  
Vol 16 (6) ◽  
pp. 861-892 ◽  
Author(s):  
Huma Ilyas ◽  
Ilyas Masih ◽  
Jan Peter van der Hoek

Abstract This paper investigates disinfection by-products (DBPs) formation and their relationship with governing factors in chlorinated swimming pools. The study compares concentrations of DBPs with WHO guidelines for drinking water quality recommended to screen swimming pool water quality. The statistical analysis is based on a global database of 188 swimming pools accumulated from 42 peer-reviewed journal publications from 16 countries. The mean and standard deviation of dichloroacetic acid and trichloroacetic acid were estimated as 282 ± 437 and 326 ± 517 μg L−1, respectively, which most often surpassed the WHO guidelines. Similarly, more than half of the examined pools had higher values of chloral hydrate (102 ± 128 μg L−1). The concentration of total chloramines (650 ± 490 μg L−1) was well above the WHO guidelines in all reported cases. Nevertheless, the reported values remained below the guidelines for most of the studied pools in the case of total trihalomethanes (134 ± 160 μg L−1), dichloroacetonitrile (12 ± 12 μg L−1) and dibromoacetonitrile (8 ± 11 μg L−1). Total organic carbon, free residual chlorine, temperature, pH, total nitrogen and bromide ions play a pivotal role in DBPs formation processes. Therefore, proper management of these governing factors could significantly reduce DBPs formation, thereby, contributing towards a healthy swimming pool environment.


2005 ◽  
Vol 52 (8) ◽  
pp. 71-76 ◽  
Author(s):  
W. Uhl ◽  
C. Hartmann

For swimming pools, it is generally agreed that free chlorine levels have to be maintained to guarantee adequate disinfection. Recommended free chlorine levels can vary between 0.3 and 0.6mg/L in Germany and up to 3mg/L in other countries. Bathers introduce considerable amounts of organic matter, mainly in the form of such as urine and sweat, into the pool water. As a consequence, disinfection byproducts (DBPs) are formed. Regulations in Germany recommend levels of combined chlorine of less than 0.2mg/L and levels of trihalomethanes (THMs) of less than 20μg/L. Haloacetic acids (HAAs), haloacetonitriles (HANs), chloropicrin and chloral hydrate are also detected in considerable amounts. However, these compounds are not regulated yet. Swimming pool staff and swimmers, especially athletes, are primarily exposed to these byproducts by inhalation and/or dermal uptake. In Germany, new regulations for swimming pool water treatment generally require the use of activated carbon. In this project, three different types of granular activated carbon (GAC) (one standard GAC, two catalytic GACs) are compared for their long time behaviour in pool water treatment. In a pilot plant operated with real swimming pool water, production and removal of disinfection byproducts (THMs, HAAs, AOXs), of biodegradable substances (AOC), of bacteria (Pseudomonas aeruginosa, Legionella, coliforms, HPC) as well as the removal of chlorine and chloramines are monitored as function of GAC bed depth. Combined chlorine penetrates deeper in the filter bed than free chlorine does. However, both, free and combined chlorine removal efficiencies decrease over the time of filter operation. The decreases of removal efficiencies are also observed for parameters such as dissolved organic carbon, spectral absorption coefficient, adsorbable organic carbon and most of the disinfection byproducts. However, THMs, especially chloroform are produced in the filter bed. The GAC beds were contaminated microbially, especially with P. aeruginosa. The contamination was not removable by backwashing with chlorine concentrations up to 2mg/l free chlorine.


Sign in / Sign up

Export Citation Format

Share Document