scholarly journals Climate Benefit of Different Tree Species on Former Agricultural Land in Northern Europe

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1810
Author(s):  
Reimo Lutter ◽  
Gustav Stål ◽  
Lina Arnesson Ceder ◽  
Hyungwoo Lim ◽  
Allar Padari ◽  
...  

The new European Union Forest Strategy for 2030 aims to plant an additional 3 billion trees on non-forest land to mitigate climate change. However, the choice of tree species for afforestation to achieve the maximum climate benefit is unclear. We compared the climate benefit of six different species in terms of carbon (C) sequestration in biomass and the harvested wood substitution in products to avoid carbon dioxide (CO2) emissions from fossil-based materials over the 100-year period by afforesting about ¼ of the available area in northern Europe. The highest climate benefit was observed for larch, both at a stand scale (1626 Mg CO2 eqv. ha−1) and at the landscape level for the studied scenario (579 million Mg CO2 eqv.). Larch was followed by Norway spruce, poplar, hybrid aspen and birch, showing a climate benefit about 40–50% lower than that for larch. The climate benefit of willow was about 70% lower than larch. Willow showed 6–14-fold lower C stocks at the landscape level after 100 years than other tree species. The major climate benefit over the 100-year period comes from wood substitution and avoided emissions, but C stock buildup at the landscape level also removes significant amounts of CO2 already present in the atmosphere. The choice of tree species is important to maximize climate change mitigation.

2018 ◽  
Vol 285 (1885) ◽  
pp. 20181240 ◽  
Author(s):  
Xiaojuan Liu ◽  
Stefan Trogisch ◽  
Jin-Sheng He ◽  
Pascal A. Niklaus ◽  
Helge Bruelheide ◽  
...  

Forest ecosystems are an integral component of the global carbon cycle as they take up and release large amounts of C over short time periods (C flux) or accumulate it over longer time periods (C stock). However, there remains uncertainty about whether and in which direction C fluxes and in particular C stocks may differ between forests of high versus low species richness. Based on a comprehensive dataset derived from field-based measurements, we tested the effect of species richness (3–20 tree species) and stand age (22–116 years) on six compartments of above- and below-ground C stocks and four components of C fluxes in subtropical forests in southeast China. Across forest stands, total C stock was 149 ± 12 Mg ha −1 with richness explaining 28.5% and age explaining 29.4% of variation in this measure. Species-rich stands had higher C stocks and fluxes than stands with low richness; and, in addition, old stands had higher C stocks than young ones. Overall, for each additional tree species, the total C stock increased by 6.4%. Our results provide comprehensive evidence for diversity-mediated above- and below-ground C sequestration in species-rich subtropical forests in southeast China. Therefore, afforestation policies in this region and elsewhere should consider a change from the current focus on monocultures to multi-species plantations to increase C fixation and thus slow increasing atmospheric CO 2 concentrations and global warming.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Peter D. McIntosh ◽  
James L. Hardcastle ◽  
Tobias Klöffel ◽  
Martin Moroni ◽  
Talitha C. Santini

Small areas of the wetter parts of southeast Australia including Tasmania support high-biomass “wet” eucalypt forests, including “mixed” forests consisting of mature eucalypts up to 100 m high with a rainforest understorey. In Tasmania, mixed forests transition to lower biomass rainforests over time. In the scientific and public debate on ways to mitigate climate change, these forests have received attention for their ability to store large amounts of carbon (C), but the contribution of soil C stocks to the total C in these two ecosystems has not been systematically researched, and consequently, the potential of wet eucalypt forests to serve as long-term C sinks is uncertain. This study compared soil C stocks to 1 m depth at paired sites under rainforest and mixed forests and found that there was no detectable difference of mean total soil C between the two forest types, and on average, both contained about 200 Mg·ha−1 of C. Some C in subsoil under rainforests is 3000 years old and retains a chemical signature of pyrogenic C, detectable in NMR spectra, indicating that soil C stocks are buffered against the effects of forest succession. The mean loss of C in biomass as mixed forests transition to rainforests is estimated to be about 260 Mg·ha−1 over a c. 400-year period, so the mature mixed forest ecosystem emits about 0.65 Mg·ha−1·yr−1 of C during its transition to rainforest. For this reason and because of the risk of forest fires, setting aside large areas of wet eucalypt forests as reserves in order to increase landscape C storage is not a sound strategy for long-term climate change mitigation. Maintaining a mosaic of managed native forests, including regenerating eucalypts, mixed forests, rainforests, and reserves, is likely to be the best strategy for maintaining landscape C stocks.


2020 ◽  
Author(s):  
David Lefebvre ◽  
Jeroen Meersmans ◽  
Guy Kirk ◽  
Adrian Williams

<p>Harvesting sugarcane (Saccharum officinarum) produces large quantities of biomass residues. We investigated the potential for converting these residues into biochar (recalcitrant carbon rich material) for soil carbon (C) sequestration. We modified a version of the RothC soil carbon model to follow changes in soil C stocks considering different amounts of fresh sugarcane residues and biochar (including recalcitrant and labile biochar fractions). We used Sao Paulo State (Brazil) as a case study due to its large sugarcane production and associated soil C sequestration potential.</p><p>Mechanical harvesting of sugarcane fields leaves behind > 10 t dry matter of trash (leaves) ha<sup>-1</sup> year<sup>-1</sup>. Although trash blanketing increases soil fertility, an excessive amount is detrimental and reduces the subsequent crop yield. After the optimal trash blanketing amount, sugarcane cultivation still produces 5.9 t C ha<sup>-1</sup> year<sup>-1</sup> of excess trash and bagasse (processing residues) which are available for subsequent use.</p><p>The available residues could produce 2.5 t of slow-pyrolysis (550°C) biochar C ha<sup>-1</sup> year<sup>-1</sup>. The model predicts this could increase sugarcane field soil C stock on average by 2.4 ± 0.4 t C ha<sup>‑1</sup> year<sup>‑1</sup>, after accounting for the climate and soil type variability across the State. Comparing different scenarios, we found that applying fresh residues into the field results in a smaller increase in soil C stock compared to the biochar because the soil C approaches a new equilibrium. For instance, adding 1.2 t of biochar C ha<sup>‑1</sup> year<sup>‑1</sup> along with 3.2 t of fresh residue C ha<sup>‑1</sup> year<sup>‑1 </sup>increased the soil C stock by 1.8 t C ha<sup>‑1</sup> year<sup>‑1 </sup>after 10 years of repeated applications. In contrast, adding 0.62 t of biochar C ha<sup>‑1</sup> year<sup>‑1</sup> with 4.5 t of fresh sugarcane residues C ha<sup>‑1</sup> year<sup>‑1 </sup>increased the soil carbon soil stock by 1.4 t C ha<sup>‑1</sup> year<sup>‑1</sup> after 10 years of application. These are reductions 25% and 40% of the potential soil C accumulation rates compared with applying available residues as biochar.   </p><p>We also tested the sensitivity of the model to biochar-induced positive priming (i.e. increased mineralization of soil organic C) using published values. This showed that the C sequestration balance remains positive over the long term, even considering an extremely high positive-priming factor. Upscaling our results to the total 5 Mha of sugarcane in Sao Paulo State, biochar application could sequester up to 50 Mt of CO<sub>2</sub> equivalent per year, representing 31% of the emissions attributed to the State in 2016.</p><p>This study provides first insights into the sequestration potential of biochar application on sugarcane fields. Measurements of changes in soil C stocks in sugarcane field experiments are needed to further validate the model, and the emissions to implement the practice at large scale need to be taken into account. As the climate crisis grows, the need for greenhouse gas removal technologies becomes crucial. Assessing the net effectiveness of readily available technologies is essential to guide policy makers.  </p>


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1276
Author(s):  
Anna Walkiewicz ◽  
Adrianna Rafalska ◽  
Piotr Bulak ◽  
Andrzej Bieganowski ◽  
Bruce Osborne

Forests contribute strongly to global carbon (C) sequestration and the exchange of greenhouse gases (GHG) between the soil and the atmosphere. Whilst the microbial activity of forest soils is a major determinant of net GHG exchange, this may be modified by the presence of litter through a range of mechanisms. Litter may act as a physical barrier modifying gas exchange, water movement/retention and temperature/irradiance fluctuations; provide a source of nutrients for microbes; enhance any priming effects, and facilitate macro-aggregate formation. Moreover, any effects are influenced by litter quality and regulated by tree species, climatic conditions (rainfall, temperature), and forest management (clear-cutting, fertilization, extensive deforestation). Based on climate change projections, the importance of the litter layer is likely to increase due to an litter increase and changes in quality. Future studies will therefore have to take into account the effects of litter on soil CO2 and CH4 fluxes for various types of forests globally, including the impact of climate change, insect infestation, and shifts in tree species composition, as well as a better understanding of its role in monoterpene production, which requires the integration of microbiological studies conducted on soils in different climatic zones.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Michael T. Ter-Mikaelian ◽  
Alemu Gonsamo ◽  
Jing M. Chen ◽  
Gang Mo ◽  
Jiaxin Chen

Abstract Background Forests in the Far North of Ontario (FNO), Canada, are likely the least studied in North America, and quantifying their current and future carbon (C) stocks is the first step in assessing their potential role in climate change mitigation. Although the FNO forests are unmanaged, the latter task is made more important by growing interest in developing the region’s natural resources, primarily for timber harvesting. In this study, we used a combination of field and remotely sensed observations with a land surface model to estimate forest C stocks in the FNO forests and to project their future dynamics. The specific objective was to simulate historical C stocks for 1901–2014 and future C stocks for 2015–2100 for five shared socioeconomic pathway (SSP) scenarios selected as high priority scenarios for the 6th Assessment Report on Climate Change. Results Carbon stocks in live vegetation in the FNO forests remained relatively stable between 1901 and 2014 while soil organic carbon (SOC) stocks steadily declined, losing about 16% of their initial value. At the end of the historical simulation (in 2014), the stocks were estimated at 19.8, 46.4, and 66.2 tCha−1 in live vegetation, SOC, and total ecosystem pools, respectively. Projections for 2015–2100 indicated effectively no substantial change in SOC stocks, while live vegetation C stocks increased, accelerating their growth in the second half of the twenty-first century. These results were consistent among all simulated SSP scenarios. Consequently, increase in total forest ecosystem C stocks by 2100 ranged from 16.7 to 20.7% of their value in 2015. Simulations with and without wildfires showed the strong effect of fire on forest C stock dynamics during 2015–2100: inclusion of wildfires reduced the live vegetation increase by half while increasing the SOC pool due to higher turnover of vegetation C to SOC. Conclusions Forest ecosystem C stock estimates at the end of historical simulation period were at the lower end but within the range of values reported in the literature for northern boreal forests. These estimates may be treated as conservatively low since the area included in the estimates is poorly studied and some of the forests may be on peat deposits rather than mineral soils. Future C stocks were projected to increase in all simulated SSP scenarios, especially in the second half of the twenty-first century. Thus, during the projected period forest ecosystems of the FNO are likely to act as a C sink. In light of growing interest in developing natural resources in the FNO, collecting more data on the status and dynamics of its forests is needed to verify the above-presented estimates and design management activities that would maintain their projected C sink status.


Author(s):  
K. Vinod ◽  
A. Anasu Koya ◽  
V. A. Kunhi Koya ◽  
P. G. Silpa ◽  
P. K. Asokan ◽  
...  

Mangroves are keystone ecosystems which provide numerous environmental services. Mangroves assume significance as standing stores of sequestered atmospheric carbon and are therefore, important in the light of climate change mitigation. In this study, we attempted to assess the biomass of mangroves in the Kadalundi wetland, south-west coast of India and evaluated the potential of these mangroves to sequester and store carbon. The C-stocks of above-ground and root biomass were 83.32±11.06 t C ha-1 and 34.96±4.30 t C ha-1 respectively, while the C-stock in sediment was estimated to be 63.87±8.67 t C ha-1. The estimates of mean combined C-stocks in the mangrove biomass and sediment of Kadalundi shows that this estuarine mangrove wetland stored 182.15 t C ha-1, which was equivalent to 668.48 t CO2 ha-1. The mangroves which cover an area of 13.23 ha in the Kadalundi wetland is assumed to have a potential to sequester and store a substantial quantity of 2,409.84 t C which is equivalent to 8,844.11 t CO2. The study underscores the importance of these intertidal forests for climate change mitigation and stresses the importance of protecting the mangroves which provide many other important ecosystem services that benefit communities.


2021 ◽  
Author(s):  
Karolina Jörgensen ◽  
Gustaf Granath ◽  
Björn D. Lindahl ◽  
Joachim Strengbom

Abstract Background and aims Forest management towards increased carbon (C) sequestration has repeatedly been suggested as a “natural climate solution”. We evaluated the potential of altered management to increase C sequestration in boreal Pinus sylvestris forest plantations. Methods At 29 forest sites, distributed along a 1300 km latitudinal gradient in Sweden, we studied interactive effects of fertilization and thinning on accumulation of C in standing biomass and the organic horizon over a 40 year period. Results Abstention from thinning increased the total C stock by 50% on average. The increase was significant (14% on average) even when C in the removed timber was included in the total ecosystem C pool. Fertilization of thinned stands increased stocks similarly regardless of including (11%) or excluding (12%) removed biomass, and fertilization combined with abstention from thinning had a synergistic effect on C stocks that generated an increase of 79% (35% when removed timber was included in the C stock). A positive effect of fertilization on C stocks was observed along the entire gradient but was greater in relative terms at high latitudes. Fertilization also reduced soil respiration rates. Conclusion Taken together, our results suggest that changed forest management practices have major potential to increase the C sink of boreal forests. Although promising, these benefits should be evaluated against the undesired effects that such management can have on economic revenue, timber quality, biodiversity and delivery of other ecosystem services.


Geosciences ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 442 ◽  
Author(s):  
Miguel A. Navarrete-Poyatos ◽  
Rafael M. Navarro-Cerrillo ◽  
Miguel A. Lara-Gómez ◽  
Joaquín Duque-Lazo ◽  
Maria de los Angeles Varo ◽  
...  

Accurate estimation of forest biomass to enable the mapping of forest C stocks over large areas is of considerable interest nowadays. Airborne laser scanning (ALS) systems bring a new perspective to forest inventories and subsequent biomass estimation. The objective of this research was to combine growth models used to update old inventory data to a reference year, low-density ALS data, and k-nearest neighbor (kNN) algorithm Random Forest to conduct biomass inventories aimed at estimating the C sequestration capacity in large Pinus plantations. We obtained a C stock in biomass (Wt-S) of 12.57 Mg ha−1, ranging significantly from 19.93 Mg ha−1 for P. halepensis to 49.05 Mg ha−1 for P. nigra, and a soil organic C stock of the composite soil samples (0–40 cm) ranging from 20.41 Mg ha−1 in P. sylvestris to 37.32 Mg ha−1 in P. halepensis. When generalizing these data to the whole area, we obtained an overall C-stock value of 48.01 Mg C ha−1, ranging from 23.96 Mg C ha−1 for P. halepensis to 58.09 Mg C ha−1 for P. nigra. Considering the mean value of the on-site C stock, the study area sustains 1,289,604 Mg per hectare (corresponding to 4,732,869 Mg CO2), with a net increase of 4.79 Mg ha−1 year−1. Such C cartography can help forest managers to improve forest silviculture with regard to C sequestration and, thus, climate change mitigation.


2015 ◽  
Vol 12 (12) ◽  
pp. 3805-3818 ◽  
Author(s):  
M. F. Adame ◽  
N. S. Santini ◽  
C. Tovilla ◽  
A. Vázquez-Lule ◽  
L. Castro ◽  
...  

Abstract. Riverine wetlands are created and transformed by geomorphological processes that determine their vegetation composition, primary production and soil accretion, all of which are likely to influence C stocks. Here, we compared ecosystem C stocks (trees, soil and downed wood) and soil N stocks of different types of riverine wetlands (marsh, peat swamp forest and mangroves) whose distribution spans from an environment dominated by river forces to an estuarine environment dominated by coastal processes. We also estimated soil C sequestration rates of mangroves on the basis of soil C accumulation. We predicted that C stocks in mangroves and peat swamps would be larger than marshes, and that C, N stocks and C sequestration rates would be larger in the upper compared to the lower estuary. Mean C stocks in mangroves and peat swamps (784.5 ± 73.5 and 722.2 ± 63.6 MgC ha−1, respectively) were higher than those of marshes (336.5 ± 38.3 MgC ha−1). Soil C and N stocks of mangroves were highest in the upper estuary and decreased towards the lower estuary. C stock variability within mangroves was much lower in the upper estuary (range 744–912 MgC ha−1) compared to the intermediate and lower estuary (range 537–1115 MgC ha−1) probably as a result of a highly dynamic coastline. Soil C sequestration values were 1.3 ± 0.2 MgC ha−1 yr−1 and were similar across sites. Estimations of C stocks within large areas need to include spatial variability related to vegetation composition and geomorphological setting to accurately reflect variability within riverine wetlands.


Sign in / Sign up

Export Citation Format

Share Document