scholarly journals Responses of Larix principis-rupprechtii Radial Growth to Climatic Factors at Different Elevations on Guancen Mountain, North-Central China

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 99
Author(s):  
Jiachuan Wang ◽  
Shuheng Li ◽  
Yili Guo ◽  
Qi Yang ◽  
Rui Ren ◽  
...  

Larix principis-rupprechtii is an important afforestation tree species in the North China alpine coniferous forest belt. Studying the correlations and response relationships between Larix principis-rupprechtii radial growth and climatic factors at different elevations is helpful for understanding the growth trends of L. principis-rupprechtiind its long-term sensitivity and adaptability to climate change. Pearson correlation, redundancy (RDA), and sliding analysis were performed to study the correlations and dynamic relationships between radial growth and climatic factors. The main conclusions are as follows: (1) The three-elevation standard chronologies all exhibited high characteristic values, contained rich climate information and were suitable for tree-ring climatological analyses. (2) Both temperature and precipitation restricted low-elevation L. principis-rupprechtii radial growth, while monthly maximum temperatures mainly affected mid-high-elevation L. principis-rupprechtii radial growth. (3) Mid-elevation L. principis-rupprechtii radial growth responded to climate factors with a “lag effect” and was not restricted by spring and early summer drought. (4) Long-term sliding analysis showed that spring temperatures and winter precipitation were the main climatic factors restricting L. principis-rupprechtii growth under warming and drying climate trends at different elevations. The tree-ring width index and Palmer drought severity index (PDSI) were positively correlated, indicating that L. principis-rupprechtii growth is somewhat restricted by drought. These results provide a reference and guidance for L. principis-rupprechtii management and sustainable development in different regions under warming and drying background climate trends.

Author(s):  
Yanhua Zhang ◽  
Shengzuo Fang ◽  
Ye Tian ◽  
Linlin Wang ◽  
Yi Lv

AbstractPoplar is raw material for various panel, paper and fiber products. The 12 sample trees of clone Nanlin-895 from four spacings were destructively harvested after thirteen growing seasons to assess the influence of spacing on radial growth and wood properties. Spacing significantly affected tree-ring width and wood basic density (p < 0.05) but not fiber traits. The highest diameter and wood basic density at breast height (1.3 m) was in 6 m × 6 m and 3 m × 8 m spacings, respectively. However, no significant differences in tree-ring width, wood basic density and fiber traits were observed among the four sampling directions in discs taken at 1.3 m for each spacing. Growth rings from the pith and tree heights had significant effects on wood basic density and fiber anatomical characteristics, highlighting obvious temporal-spatial variations. Pearson correlation analysis showed a significantly negative relationship of tree-ring width to wood basic density, fiber length and fiber width, but a significantly positive relationship to hemicellulose. There was no relationship with cellulose and lignin contents. Based on a comprehensive assessment by the TOPSIS method, the 6 m × 6 m spacing is recommended for producing wood fiber at similar sites in the future.


2020 ◽  
Vol 66 (4) ◽  
pp. 393-402
Author(s):  
Shuai Yuan ◽  
Yonghong Zheng ◽  
Yongdong Qi ◽  
Fanxi Kong ◽  
Dan Wang ◽  
...  

Abstract Soil temperature can affect tree growth and is one of the most important types of basic data for forest cultivation and management. To obtain a long-term time series of soil temperatures, we explored the utility of dendroclimatology in a subtropical area of China. In this study, the relations between tree-ring-width chronologies and climate factors were explored by correlation analysis. The results indicated that the limiting climatic factors for the radial growth of Huangshan pine were elevation-specific. Further investigation found that chronology at high elevations was significantly correlated with soil temperature. Then, we described a reconstruction of the soil temperatures of the Dabie Mountains area using the tree-ring width chronology from 1869 to 2015 and showed that the reconstruction explained 42.9 percent of the instrumental soil temperature variation in the common years. We found that the 1970s and 2000s were the coldest and warmest decades since 1884, respectively. The results of the reconstruction method for describing past soil temperatures can provide a reference for other subtropical forests. Furthermore, the results of our research also have a certain significance for guiding policymaking related to forest cultivation and management.


2007 ◽  
Vol 37 (10) ◽  
pp. 1915-1923 ◽  
Author(s):  
F. Campelo ◽  
E. Gutiérrez ◽  
M. Ribas ◽  
C. Nabais ◽  
H. Freitas

The influence of climatic factors on tree-ring width and the formation of double rings was studied in Quercus ilex L. growing in a coppice stand left unmanaged for 22 years. Ten trees were felled and discs were taken every 30 cm from bole and dominant branches. Dendrometer bands were installed on 10 nearby trees and the data recorded were used to confirm the accuracy of our tree-ring identification. They were also used to relate the seasonal radial growth pattern to double-ring formation. Double rings were frequent and occurred consistently along the stem. Two types of double rings could be recognized according to their width: type I, with the extra growth band accounting for approximately 50% of the tree ring; and type II, with a narrow extra growth band. Type I double rings were formed when approximately 1/2 of the growing-season precipitation occurred during the second growth period of the season and after the summer drought. Type II double rings occurred when approximately 1/3 of the precipitation in the growing season occurred after the summer drought. The formation of double rings was triggered by rainfall in summer and the extra growth-band width was related to summer and autumn environmental conditions. Double rings in Q. ilex can potentially be used in dendroclimatological studies, as they are formed in response to climatic conditions within the growing season.


2020 ◽  
Vol 33 ◽  
pp. 73-87
Author(s):  
Nandini Hannak ◽  
Ólafur Eggertsson

The aim of this study was to investigate the tree-ring growth of rowan (Sorbus aucuparia L.) and downy birch (Betula pubescens Ehrh.) in Ranaskógur, a forest in East Iceland, and to determine its response to climate factors during the past century. Tree-core samples were collected in September 2018 and from those a tree-ring width (TRW) chronology and a standardized tree-ring index (TRI) chronology were produced. A statistical analysis between the chronologies and monthly mean temperatures and total monthly precipitation was carried out. The study found that both species had similar radial growth during the past century. The growth of birch responded significantly positively to June and July temperatures, while rowan responded significantly positively to July and August temperatures. The growth of neither species was significantly affected by precipitation across the whole period. However, in the 1940s to early 1960s, rowan growth correlated significantly with June precipitation, and birch with April and May precipitation.


Forests ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 98
Author(s):  
ShouJia Sun ◽  
Shuai Lei ◽  
HanSen Jia ◽  
Chunyou Li ◽  
JinSong Zhang ◽  
...  

Population density influences tree responses to environmental stresses, such as drought and high temperature. Prolonged drought negatively affects the health of Mongolian pines in forests planted by the Three-North Shelter Forest Program in North China. To understand the relationship between stand density and drought-induced forest decline, and to generate information regarding the development of future management strategies, we analyzed the vulnerability to drought of planted Mongolian pines at three stand densities. A tree-ring width index for trees from each density was established from tree-ring data covering the period 1988–2018 and was compared for differences in radial growth. Resistance (Rt), recovery (Rc), resilience (Rs), and relative resilience (RRs) in response to drought events were calculated from the smoothed basal area increment (BAI) curves. The high-density (HDT) group showed a consistently lower tree-ring width than the border trees (BT) and low-density (LDT) groups. The BAI curve of the HDT group started to decrease five years earlier than the LDT and BT groups. Pearson correlation analysis revealed that the radial growth of all of the groups was related to precipitation, relative humidity (RH), potential evapotranspiration (ET0), and standardized precipitation evapotranspiration index (SPEI) in the previous October and the most recent July, indicating that Mongolian pine trees of different densities had similar growth–climate relationships. Over the three decades, the trees experienced three severe drought events, each causing reduced tree-ring width and BAI. All of the groups showed similar Rc to each drought event, but the HDT group exhibited significantly lower Rt, Rs, and RRs than the BT group, suggesting that the HDT trees were more vulnerable to repeated drought stress. The RRs of the HDT group decreased progressively after each drought event and attained <0 after the third event. All of the groups showed similar trends regarding water consumption under varying weather conditions, but the HDT group showed significantly reduced whole-tree hydraulic capability compared with the other two groups. From these results, HDT trees exhibit ecophysiological memory effects from successive droughts, including sap flux dysfunction and higher competition index, which may prevent recovery of pre-drought growth rates. HDT trees may be at greater risk of mortality under future drought disturbance.


1996 ◽  
Vol 26 (11) ◽  
pp. 2052-2055 ◽  
Author(s):  
K. Yasue ◽  
R. Funada ◽  
T. Kondo ◽  
O. Kobayashi ◽  
K. Fukazawa

The influence of climate on the radial growth of Japanese ash (Fraxinusmandshurica Rupr. var. japonica Maxim.) in northern Hokkaido, Japan, was investigated. Fifteen trees were selected and ring widths were measured. Standardization and autoregressive modeling were applied to the series of ring widths for isolation of the climatic signal. A response function was calculated for the relationship between residual chronology and monthly temperature and precipitation. In the season that preceded the growth, December precipitation is negatively correlated with ring width. During the growing season, May temperature is negatively correlated with ring width, while both temperature and precipitation in July are positively correlated with ring width. The results reveal the potential usefulness of Japanese ash for reconstruction of past climate in Hokkaido. The chronology of Japanese ash contributes to a development of a tree-ring network in Japan that is still sparse.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 878
Author(s):  
Chang-Hyun Park ◽  
Ui-Cheon Lee ◽  
Soo-Chul Kim ◽  
Kwang-Hee Lee

To analyze the relationship between climatic factors (monthly mean temperature and total precipitation) and tree-ring growths of Pinus densiflora from the central region of the Republic of Korea, more than 20 trees were sampled from three national parks. The tree-ring chronology of Mt. Bukhan covering the period of 1917–2016 was assessed, as well as that of Mt. Seorak across 1687–2017 and Mt. Worak across 1777–2017. After cross-dating, each ring-width series was double-standardized by first fitting a logarithmic curve and then a 50 year cubic spline. Climate-growth relationships were computed with bootstrap correlation functions. The result of the analysis showed a positive response from the current March temperature and May precipitations for tree-ring growth of Pinus densiflora. It indicates that a higher temperature supply during early spring season and precipitation during cambium activity are important for radial growths of Pinus densiflora from the central region in the Republic of Korea.


2013 ◽  
Vol 22 (2) ◽  
pp. 36-42 ◽  
Author(s):  
D. K. Kharal ◽  
T. Fujiwara

Tree ring analysis is one of the most useful methods in volume and biomass estimation especially of the conifer trees. Ring width and ring density are important parameters in dendrochronological research. The present research was carried out with the aim of estimating the radial and volumetric growth of the Japanese Cypress trees (Chamaecyperis obstusa and C. pisifera). Destructive method was used while collecting the wood samples from the selected trees. Ring width and ring density were measured using soft X-ray densitometry method using micro-densitometer. Computer programme, developed by the Forestry and Forest Products Research Institute, Japan was used to analyze the ring with and ring density data. The average ring width of the Chamaecyparis spp. was found to be about 3.4 mm at the age of 30 years. However, two types of growth pattern were observed in the trees. Average radial growth was about 5% every year during the first 20 years of the tree age, whereas, the average radial growth was negative during the age of 20–30 years. Average density of the tree rings were increased by about 11% in each height of the trees starting from the ground. Similarly, the stem density decreased by about 3.4% annually along the radial direction from the pith.DOI: http://dx.doi.org/10.3126/banko.v22i2.9197Banko Janakari: A Journal of Forestry Information for NepalVol. 22, No. 2, 2012 November Page: 36-42 Uploaded date: 12/1/2013 


2021 ◽  
Vol 12 ◽  
Author(s):  
Domen Arnič ◽  
Jožica Gričar ◽  
Jernej Jevšenak ◽  
Gregor Božič ◽  
Georg von Arx ◽  
...  

European beech (Fagus sylvatica L.) adapts to local growing conditions to enhance its performance. In response to variations in climatic conditions, beech trees adjust leaf phenology, cambial phenology, and wood formation patterns, which result in different tree-ring widths (TRWs) and wood anatomy. Chronologies of tree ring width and vessel features [i.e., mean vessel area (MVA), vessel density (VD), and relative conductive area (RCTA)] were produced for the 1960–2016 period for three sites that differ in climatic regimes and spring leaf phenology (two early- and one late-flushing populations). These data were used to investigate long-term relationships between climatic conditions and anatomical features of four quarters of tree-rings at annual and intra-annual scales. In addition, we investigated how TRW and vessel features adjust in response to extreme weather events (i.e., summer drought). We found significant differences in TRW, VD, and RCTA among the selected sites. Precipitation and maximum temperature before and during the growing season were the most important climatic factors affecting TRW and vessel characteristics. We confirmed differences in climate-growth relationships between the selected sites, late flushing beech population at Idrija showing the least pronounced response to climate. MVA was the only vessel trait that showed no relationship with TRW or other vessel features. The relationship between MVA and climatic factors evaluated at intra-annual scale indicated that vessel area in the first quarter of tree-ring were mainly influenced by climatic conditions in the previous growing season, while vessel area in the second to fourth quarters of tree ring width was mainly influenced by maximum temperature and precipitation in the current growing season. When comparing wet and dry years, beech from all sites showed a similar response, with reduced TRW and changes in intra-annual variation in vessel area. Our findings suggest that changes in temperature and precipitation regimes as predicted by most climate change scenarios will affect tree-ring increments and wood structure in beech, yet the response between sites or populations may differ.


1994 ◽  
Vol 42 (1) ◽  
pp. 88-99 ◽  
Author(s):  
Malcolm K. Hughes ◽  
Wu Xiangding ◽  
Shao Xuemei ◽  
Gregg M. Garfin

AbstractMay-June (MJ) and April-July (AJ) precipitation at Huashan in north-central China has been reconstructed for the period A.D. 1600 to 1988 using tree-ring density and width fromPinus armandii. MJ precipitation (based on ring width and maximum latewood density) calibrated and cross-validated against local instrumental data more strongly than AJ precipitation (based only on ring width). A major drought was reconstructed for the mid- and late 1920s, confirmed by local documentary sources. This drought (culminating in 1929) was the most severe of the 389-yr period for MJ and second most severe for AJ, after an event ending in 1683. Neither reconstruction shows much spectral power at frequencies lower than 1 in 10 yr, but both show concentrations of power between 2.1 and 2.7 yr and 3.5 to 9 yr. There are significant correlations between the two reconstructions and a regional dryness/wetness index (DW) based on documentary sources, particularly at high frequencies. These correlations are focused in the 7.6- to 7.3-, 3.8- to 3.6-, and 2.5-yr periods. Using singular spectrum analysis, quasiperiodic behavior with a period close to 7.2 yr was identified in the MJ precipitation reconstruction and in the DW index based on documents.


Sign in / Sign up

Export Citation Format

Share Document