scholarly journals Do Non-Saccharomyces Yeasts Work Equally with Three Different Red Grape Varieties?

Fermentation ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 3 ◽  
Author(s):  
Rocío Escribano-Viana ◽  
Patrocinio Garijo ◽  
Isabel López-Alfaro ◽  
Rosa López ◽  
Pilar Santamaría ◽  
...  

The present study aimed to investigate the oenological changes induced by non-Saccharomyces yeasts in three red grape varieties from the Rioja Qualified Designation of Origin. Pilot plants fermentation of three different varieties, were conducted following early inoculations with Metschnikowia pulcherrima and with mixed inoculum of Lachancea thermotolerans-Torulaspora delbrueckii from La Rioja and compared to a wine inoculated with Saccharomyces cerevisiae. The microbiological and physicochemical characteristics of vinifications were analysed. Results showed that most of the variations due to inoculation strategies were observed in Tempranillo just after the alcoholic fermentation, probably because of the better adaptation of the inocula to the must’s oenological properties. Finally, after the malolactic fermentation the inoculation with the mix of Lachancea thermotolerans and Torulaspora delbrueckii caused more changes in Tempranillo and Grenache wines while the early inoculation with Metschnikowia pulcherrima had more effects on Grenache wines. Therefore, the study was aimed to identify the fermentation effects of each inoculation strategy by using different non-Saccharomyces yeasts and different grape varieties.

Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 171
Author(s):  
Ricardo Vejarano ◽  
Angie Gil-Calderón

About 42 commercial products based on non-Saccharomyces yeasts are estimated as available on the market, being mostly pure cultures (79%), with a predominance of Torulaspora delbrueckii, Lachancea thermotolerans, and Metschnikowia pulcherrima. The others are multi-starter consortia that include non-Saccharomyces/Saccharomyces mixtures or only non-Saccharomyces species. Several commercial yeasts have shown adequate biocompatibility with S. cerevisiae in mixed fermentations, allowing an increased contribution of metabolites of oenological interest, such as glycerol, esters, higher alcohols, acids, thiols, and terpenes, among others, in addition to a lower production of acetic acid, volatile phenols, biogenic amines, or urea. Multi-starter inoculations are also reviewed here, which show adequate biocompatibility and synergy between species. In certain cases, the aromatic profile of wines based on grape varieties considered neutral is improved. In addition, several yeasts show the capacity as biocontrollers against contaminating microorganisms. The studies conducted to date demonstrate the potential of these yeasts to improve the properties of wine as an alternative and complement to the traditional S. cerevisiae.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 148
Author(s):  
Rocío Escribano-Viana ◽  
Lucía González-Arenzana ◽  
Patrocinio Garijo ◽  
Rosa López ◽  
Pilar Santamaría ◽  
...  

The use of non-Saccharomyces yeasts in sequential fermentations with S. cerevisiae has been proposed to improve the organoleptic characteristics involved in the quality of wine. The present study set out to select a non-Saccharomyces inoculum from the D.O.Ca. Rioja for use in winemaking. Strains included in the study belonged to Torulaspora delbrueckii, Lachancea thermotolerans, Metschnikowia pulcherrima, Zygosaccharomyces bailii, Williopsis pratensis, Debaryomyces hansenii, Pichia kluyveri, Sporidiobolus salmonicolor, Candida spp., Cryptococcus spp. and two mixed inocula of Lachancea thermotolerans-Torulaspora delbrueckii in a 30/70 ratio. In the first stage of the process, SO2 resistance and presence of enzymatic activities related to wine aroma and wine color and fining (esterase, esterase-lipase, lipase, leucine arylamidase, valine arylamidase, cystine arylamidase, β-glucosidase, pectinase, cellulose, xylanase and glucanase) were studied. In the later stages, selection criteria such as fermentative behavior, aroma compound production or influence on phenolic compounds were studied in laboratory scale vinifications. Taking into account the results obtained in the different stages of the process, a mixed inoculum of Lachancea thermotolerans-Torulaspora delbrueckii in a 30/70 ratio was finally selected. This inoculum stood out for its high implantation capacity, the production of compounds of interest such as glycerol and lactic acid and the consequent modulation of wine acidity. Given these characteristics, the selected inoculum is suitable for the production of quality wines.


Fermentation ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 59
Author(s):  
Filomena L. Duarte ◽  
Ricardo Egipto ◽  
M. Margarida Baleiras-Couto

The study and use of non-Saccharomyces yeasts to wine improvement and diversification has gained considerable relevance in recent years. The present work reports a pilot-scale winery assay of mixed fermentation with a commercial strain of Metschnikowia pulcherrima, tested in five white and nine red grape varieties. Two modalities were assayed, one with the addition of M. pulcherrima at time zero and addition of Saccharomyces cerevisiae after 24 h, and a control using only S. cerevisiae at time zero. Fermentation was monitored by daily measurement of density and temperature. Wine physicochemical analysis was performed after winemaking and repeated after four years of aging. Variance and multivariate analysis were used to examine these data. Triangle and ranking tests were performed on the wines obtained, using an experienced sensory panel. Alcoholic fermentation proceeded smoothly until there was complete consumption of the sugars. M. pulcherrima in mixed fermentation, although mainly recommended for white wine, was also tested for red wines. These wines generally presented higher glycerol, reducing sugars and total dry matter, and lower alcohol content, in line with the current market trend. Significant sensory differences among modalities were only obtained for three varieties. Results emphasized that grape variety is a relevant factor in studies with non-Saccharomyces yeasts.


OENO One ◽  
2020 ◽  
Vol 54 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Alba Martín-García ◽  
Aitor Balmaseda ◽  
Albert Bordons ◽  
Cristina Reguant

Interest in some non-Saccharomyces yeasts has increased recently, because they have been associated with an improvement in wine quality. Nevertheless, little attention has been paid to the effect that the use of these yeasts may have on malolactic fermentation (MLF). In this study, the strains Torulaspora delbrueckii Biodiva and Metschnikowia pulcherrima Flavia were evaluated by co-inoculation and sequential fermentation with S. cerevisiae QA23. A fermentation with S. cerevisiae as a single starter was also performed as a control, then MLF was performed inoculating Oenococcus oeni PSU-1 in all wines. Finally, the wines obtained after alcoholic fermentation and MLF were characterised. The results of the coinoculated fermentations were similar to those of the S. cerevisiae control fermentations. Nevertheless, significant differences were observed in sequential fermentations in terms of lower content of acetic, L-malic and succinic acids. These differences were particularly noticeable in fermentations carried out with T. delbrueckii.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1472
Author(s):  
Cristian Vaquero ◽  
Iris Loira ◽  
Javier Raso ◽  
Ignacio Álvarez ◽  
Carlota Delso ◽  
...  

New nonthermal technologies, including pulsed electric fields (PEF), open a new way to generate more natural foods while respecting their organoleptic qualities. PEF can reduce wild yeasts to improve the implantation of other yeasts and generate more desired metabolites. Two PEF treatments were applied; one with an intensity of 5 kV/cm was applied continuously to the must for further colour extraction, and a second treatment only to the must (without skins) after a 24-hour maceration of 17.5 kV/cm intensity, reducing its wild yeast load by up to 2 log CFU/mL, thus comparing the implantation and fermentation of inoculated non-Saccharomyces yeasts. In general, those treated with PEF preserved more total esters and formed more anthocyanins, including vitisin A, due to better implantation of the inoculated yeasts. It should be noted that the yeast Lachancea thermotolerans that had received PEF treatment produced four-fold more lactic acid (3.62 ± 0.84 g/L) than the control of the same yeast, and Hanseniaspora vineae with PEF produced almost three-fold more 2-phenylethyl acetate than the rest. On the other hand, 3-ethoxy-1-propanol was not observed at the end of the fermentation with a Torulaspora delbrueckii (Td) control but in the Td PEF, it was observed (3.17 ± 0.58 mg/L).


2019 ◽  
Vol 7 (6) ◽  
pp. 164 ◽  
Author(s):  
Inês Oliveira ◽  
Vicente Ferreira

The goal of this study is to assess to what extent non-Saccharomyces yeasts can introduce aromatic changes of industrial interest in fermentative, varietal and aged aromas of wine. Aroma precursors from Riesling and Garnacha grapes were extracted and used in two independent sequential experiments. Synthetic musts were inoculated, either with Saccharomyces cerevisiae (Sc) or with Pichia kluyveri (Pk), Torulaspora delbrueckii (Td) or Lachancea thermotolerans (Lt), followed by Sc. The fermented samples were subjected to anoxic aging at 50 °C for 0, 1, 2 or 5 weeks before an aroma analysis. The fermentative aroma profiles were consistently changed by non-Saccharomyces: all strains induced smaller levels of isoamyl alcohol; Pk produced huge levels of aromatic acetates and can induce high levels of fatty acids (FA) and their ethyl esters (EE); Td produced large levels of branched acids and of their EE after aging, and induced smaller levels of FA and their EE; Lt produced reduced levels of FA and their EE. The varietal aroma was also deeply affected: TDN (1,1,6-trimethyl-1,2- dihydronaphthalene) levels in aged wines were reduced by Pk and enhanced by Lt in Garnacha; the levels of vinylphenols can be much reduced, particularly by Lt and Pk. TD and Lt can increase linalool and geraniol in young, but not in aged wines.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2353 ◽  
Author(s):  
Carlos Escott ◽  
Antonio Morata ◽  
Jorge Ricardo-da-Silva ◽  
María Callejo ◽  
María González ◽  
...  

Anthocyanins in red grape musts may evolve during the winemaking process and wine aging for several different reasons; colour stability and evolution is a complex process that may depend on grape variety, winemaking technology, fermentative yeast selection, co-pigmentation phenomena and polymerization. The condensation of flavanols with anthocyanins may occur either with the flavylium ion or with the hemiacetal formation in order to produce oligomers and polymers. The kinetics of the reaction are enhanced by the presence of metabolic acetaldehyde, promoting the formation of pyranoanthocyanin-type dimers or flavanol-ethyl-anthocyanin structures. The experimental design carried out using white must corrected with the addition of malvidin-3-O-glucoside and flavanols, suggests that non-Saccharomyces yeasts are able to provide increased levels of colour intensity and larger polymeric pigment ratios and polymerization indexes. The selection of non-Saccharomyces genera, in particular Lachancea thermotolerans and Schizosaccharomyces pombe in sequential fermentation, have provided experimental wines with increased fruity esters, as well as producing wines with potential pigment compositions, even though there is an important reduction of total anthocyanins.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 64
Author(s):  
Ana María Mislata ◽  
Miquel Puxeu ◽  
Immaculada Andorrà ◽  
Noelia Espligares ◽  
Sergi de Lamo ◽  
...  

Background: Cava is considered to be a high-quality wine internationally. Hence, it has undergone consistent improvement and/or the preservation of its aromatic qualities, bouquet, color, and foamability, throughout its elaboration and aging. Methods: This study investigates the use of different Saccharomyces and non-Saccharomyces yeasts strains (Torulaspora delbrueckii and Metschnikowia pulcherrima) in Chardonnay and Xarel.lo cava wines. The usual enological parameters, the volatile composition, the protein contents, and foamability were determined, and sensory analyses were also performed for all of the vinifications (both before tirage and after 18 months of aging on the lees). Results: the protein and foamability results show that there is a direct relationship between both parameters, with better foam persistence achieved in some non-Saccharomyces fermentation. M. pulcherrima base wines showed a high protein content, improving foamability and foaming persistence. In addition, the results of the aromatic composition and the sensory analysis showed that the use of T. delbrueckii at first fermentation produced interesting cavas from an aromatic perspective. These cavas showed the highest values of ethyl isovalerate (120–126 µg/L), providing aromatic fruity notes, especially fresh green apple. Conclusions: the use of non-Saccharomyces yeasts in the base wine fermentation can be an alternative to produce cavas with differentiated aromatic characteristics and interesting foaming ability.


Author(s):  
Isak Pretorius

A perfectly balanced wine can be said to create a symphony in the mouth. To achieve the sublime, both in wine and music, requires imagination and skilled orchestration of artistic craftmanship. For wine, inventiveness starts in the vineyard. Similar to a composer of music, the grapegrower produces grapes through a multitude of specifications to achieve a quality result. Different Vitis vinifera grape varieties allow the creation of wine of different genres. Akin to a conductor of music, the winemaker decides what genre to create and considers resources required to realise the grape’s potential. A primary consideration is the yeast: inoculate the grape juice or leave it ‘wild’; which specific or combined Saccharomyces strain(s) should be used; or proceed with a non-Saccharomyces species? Whilst the various Saccharomyces and non-Saccharomyces yeasts perform their role during fermentation, the performance is not over until the ‘fat lady’ (S. cerevisiae) has sung (i.e. the grape sugar has been fermented to specified dryness and alcoholic fermentation is complete). Is the wine harmonious or discordant? Will the consumer demand an encore and make a repeat purchase? Understanding consumer needs lets winemakers orchestrate different symphonies (i.e. wine styles) using single- or multi-species ferments. Some consumers will choose the sounds of a philharmonic orchestra comprising a great range of diverse instrumentalists (as is the case with wine created from spontaneous fermentation); some will prefer to listen to a smaller ensemble (analogous to wine produced by a selected group of non-Saccharomyces and Saccharomyces yeast); and others will favour the well-known and reliable superstar soprano (i.e. S. cerevisiae). But what if a digital music synthesiser ‒ such as a synthetic yeast ‒ becomes available that can produce any music genre with the purest of sounds by the touch of a few buttons? Will synthesisers spoil the character of the music and lead to the loss of the much-lauded romantic mystique? Or will music synthesisers support composers and conductors to create novel compositions and even higher quality performances that will thrill audiences? This article explores these and other relevant questions in the context of winemaking and the role that yeast and its genomics play in the betterment of wine quality.


Sign in / Sign up

Export Citation Format

Share Document