scholarly journals Milk Fermentation by Lacticaseibacillus rhamnosus GG and Streptococcus thermophilus SY-102: Proteolytic Profile and ACE-Inhibitory Activity

Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 215
Author(s):  
Jessica Lizbeth Sebastián-Nicolas ◽  
Elizabeth Contreras-López ◽  
Juan Ramírez-Godínez ◽  
Alma Elizabeth Cruz-Guerrero ◽  
Gabriela Mariana Rodríguez-Serrano ◽  
...  

Health benefits of probiotics and production of inhibitors of angiotensin converting enzyme (ACE) released during milk fermentation are well known. That is why in this investigation the proteolytic profile and ACE inhibitory capacity of peptide fractions from protein hydrolysis of milk during fermentation processes was analyzed. Milk fermentation was carried out inoculating 106 CFU of L. rhamnosus GG, S. thermophilus SY-102 and with both bacteria. The proteolytic profile was determined using: TNBS, SDS-PAGE and SEC-HPLC techniques. In vitro ACE inhibition capacity was measured. The pH of 4.5 was reached at 56 h when the milk was fermented with L. rhamnosus, at 12 h with S. thermophillus and at 41 h in the co-culture. Production of free amino groups corresponded with the profile of low molecular weight peptides observed by SDS-PAGE and SEC-HPLC. Co-culture fermentation showed both the highest concentration of low molecular weight peptides and the ACE inhibitory activity (>80%). Results indicated that the combination of lactic cultures could be useful in manufacture of fermented milk with an added value that goes beyond basic nutrition, such as the production of ACE-inhibitory peptides.

2007 ◽  
Vol 74 (3) ◽  
pp. 336-339 ◽  
Author(s):  
Blanca Hernández-Ledesma ◽  
Marta Miguel ◽  
Lourdes Amigo ◽  
Maria Amaya Aleixandre ◽  
Isidra Recio

In this study, the antihypertensive activity in spontaneously hypertensive rats of two peptides isolated from β-lactoglobulin hydrolysates with thermolysin was evaluated. These peptides, with sequences LLF [β-lg f(103–105)] and LQKW [β-lg f(58–61)], showed potent in vitro ACE-inhibitory activity. Two hours after administration, both sequences caused a clear and significant decrease in the blood pressure of these rats. The impact of a simulated gastrointestinal digestion on ACE-inhibitory and antihypertensive activities of these peptides was also studied. The results showed that both fragments were susceptible to proteolytic degradation after incubation with pepsin and Corolase PP®. In addition, their in vitro ACE-inhibitory activity decreased after the simulated digestion. It is likely that fragment LQK was the active end product of the gastrointestinal digestion of peptide LQKW. The fragment LL, observed after digestion of peptide LLF, probably exert its antihypertensive effect through a mechanism of action different than ACE-inhibition.


2020 ◽  
Vol 16 (2) ◽  
pp. 42
Author(s):  
Marta Tika Handayani ◽  
Retno Indrati ◽  
Muhammad Nur Cahyanto

Tempeh is a fermented food that is good for health and has high nutritional value. Koro kratok tempeh is one of tempeh which is made from non-soybean legumes. The fermentation process will convert macromolecular compounds to micromolecules thereby increasing bioavailability and providing functional properties. This study aimed to find out the chemical properties of koro kratok tempeh and the effect of peptide molecular weight of koro kratok tempeh on ACE inhibition activity. The results show that koro kratok seeds contained 20.66% protein which total hydrophobic amino acid was 3.32% (w/w protein). This hydrophobic amino acid was higher than that soybean, indicated that koro kratok (Phaseolus lunatus) has a potential producing ACE peptide inhibitors. The koro kratok seeds had ACE inhibitory activity  19.72%. This activity increased to 84.97% when the seeds were fermented for 48h to become tempeh. Peptide fractionation showed that the smaller the molecular weight of the peptide, the higher the ACE inhibitory activity.


Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 271 ◽  
Author(s):  
Juan María Alcaide-Hidalgo ◽  
Miguel Romero ◽  
Juan Duarte ◽  
Eduardo López-Huertas

The low molecular weight peptide composition of virgin olive oil (VOO) is mostly unknown. We hypothesised that unfiltered VOO could possess low molecular weight peptides with antihypertensive activity. We produced unfiltered VOO and obtained a water-soluble peptide extract from it. The peptides were separated by size-exclusion using fast protein liquid chromatography, and the low molecular weight fraction was analysed by nanoscale liquid chromatography-Orbitrap coupled with tandem mass spectrometry and de novo sequencing. We selected 23 peptide sequences containing between 6 and 9 amino acids and molecular masses ranging 698–1017 Da. Those peptides were chemically synthesised and their angiotensin-converting enzyme (ACE) inhibitory activity was studied in vitro. Seven peptides showed a strong activity, with half maximal inhibitory concentration (IC50) <10 µm. The antihypertensive effects of the four most active synthesised ACE inhibitor peptides were studied in spontaneously hypertensive rats (SHR). Acute oral administration of synthetic peptides RDGGYCC and CCGNAVPQ showed antihypertensive activity in SHR. We conclude that unfiltered VOO naturally contains low molecular weight peptides with specific ACE inhibitory activity and antihypertensive effects in SHR.


2003 ◽  
Vol 71 (11) ◽  
pp. 6648-6652 ◽  
Author(s):  
Steven Giles ◽  
Charles Czuprynski

ABSTRACT In this study we found that serum inhibitory activity against Blastomyces dermatitidis was principally mediated by albumin. This was confirmed in experiments using albumin from several mammalian species. Analbuminemic rat serum did not inhibit B. dermatitidis growth in vivo; however, the addition of albumin restored inhibitory activity. Inhibitory activity does not require albumin domain III and appears to involve binding of a low-molecular-weight yeast-derived growth factor.


2017 ◽  
Vol 42 (4) ◽  
Author(s):  
Asif Wali ◽  
Haile Ma ◽  
Muhammad Tayyab Rashid ◽  
Qui Fang Liang

AbstractObjective:The main purpose of this study was to screen effective proteolytic enzymes for producing hydrolysates from rapes protein, and to optimize hydrolysis conditions using response surface design to prepare hydrolysates with maximum ACE inhibitor activity.Methods:RSM design was successfully applied to the hydrolysis conditions on the basis of single factor experiments which further derived a statistical model for experimental validation. The molecular weight distribution of rapeseed protein hydrolysates with different degree of hydrolysis was also investigated.Results:All the proteolytic enzymes tested produced hydrolysates that possessed ACE inhibitory activity. Aiding RSM design the highest ACE inhibitory activity 56.3% was achieved under optimum hydrolysis conditions at the hydrolysis time, pH, hydrolysis temperature, and enzyme dosage were at 90.11 min, 8.88, 50°C and 3580.36 UgConclusion:Enzymatic hydrolysis and response surface methodology found good techniques in order to achieve hydrolysates with maximum ACE inhibitory activity. The findings of current research suggested that the hydrolysates obtained under optimized conditions could be utilized to formulate nutraceuticals and pharmaceuticals


1981 ◽  
Author(s):  
M Yamauchi ◽  
H Takei ◽  
T Seya ◽  
Y Oguma ◽  
T Murakoshi ◽  
...  

ABy means of SDS-PAGE (3.3% gel), Fbg heterogeneity originated from partial degradation of Aα chain was studied. Comparison of electrophoretic patterns of plasma and corresponding serum made it possible to identify 2 major Fbg bands designated as high-molecular-weight Fbg (HMW, MW 350,000) and low-molecular-weight Fbg (LMW, MW 310,000). LMW comprised 28×2% (mean×S.D) of total Fbg (HMW+LMW) in healty subjects. The elevation of fibrinolytic activity did not accompany the increase of percentages of LMW in various diseases, even in cirrhotic patients whose levels of α2;PI were low. In DIC patients percentages of LMW were decreased extremely (12×6%, mean×SD). Samples from animal experimental models of DIC exhibited the same pattern of Fbg heterogeneity as that of DIC patients.UK was added to the purified Fbg in vitro. On the earliest stage of the fibrinogenolysis. 2 bands appeared newly on SDS-PAGE, while the bands of HMW and LMW were decreased. One of these new bands (Band 1) corresponded with a major compornent of Fraction 1-9 of Mosesson. It was located in the slightly anodal position (MW 300,000) from LMW band. Another band (MW 270,000) migrated between Band 1 and the band of Frag X. The same pattern of Fbg heterogeneity was observed in patients recieving large dose of UK. After cessation of UK treatment these new bands disappeared, while the bands of HMW was increased extremelThese findings suggest that HMW is a freshly synthesized Fbg and that unknown mechanism without plasmin may present for the conversion HMW to LMW.


2020 ◽  
Vol 21 (3) ◽  
pp. 1059 ◽  
Author(s):  
Ruidan Wang ◽  
Xin Lu ◽  
Qiang Sun ◽  
Jinhong Gao ◽  
Lin Ma ◽  
...  

The aim of this study was to isolate and identify angiotensin I-converting enzyme (ACE) inhibitory peptides from sesame protein through simulated gastrointestinal digestion in vitro, and to explore the underlying mechanisms by molecular docking. The sesame protein was enzymatically hydrolyzed by pepsin, trypsin, and α-chymotrypsin. The degree of hydrolysis (DH) and peptide yield increased with the increase of digest time. Moreover, ACE inhibitory activity was enhanced after digestion. The sesame protein digestive solution (SPDS) was purified by ultrafiltration through different molecular weight cut-off (MWCO) membranes and SPDS-VII (< 3 kDa) had the strongest ACE inhibition. SPDS-VII was further purified by NGC Quest™ 10 Plus Chromatography System and finally 11 peptides were identified by Nano UHPLC-ESI-MS/MS (nano ultra-high performance liquid chromatography-electrospray ionization mass spectrometry/mass spectrometry) from peak 4. The peptide GHIITVAR from 11S globulin displayed the strongest ACE inhibitory activity (IC50 = 3.60 ± 0.10 μM). Furthermore, the docking analysis revealed that the ACE inhibition of GHIITVAR was mainly attributed to forming very strong hydrogen bonds with the active sites of ACE. These results identify sesame protein as a rich source of ACE inhibitory peptides and further indicate that GHIITVAR has the potential for development of new functional foods.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 978 ◽  
Author(s):  
Cíntia L. Handa ◽  
Yan Zhang ◽  
Shweta Kumari ◽  
Jing Xu ◽  
Elza I. Ida ◽  
...  

Angiotensin converting enzyme (ACE) converts angiotensin I into the vasoconstrictor angiotensin II and eventually elevates blood pressure. High blood pressure is a major risk factor for heart disease and stroke. Studies show peptides present anti-hypertensive activity by ACE inhibition. During food processing and digestion, food proteins may be hydrolyzed and release peptides. Our objective was to determine and compare the ACE inhibitory potential of fermented and non-fermented soy foods and isolated 7S and 11S protein fractions. Soy foods (e.g., soybean, natto, tempeh, yogurt, soymilk, tofu, soy-sprouts) and isolated proteins were in vitro digested prior to the determination of ACE inhibitory activity. Peptide molecular weight distribution in digested samples was analyzed and correlated with ACE inhibitory capacity. Raw and cooked soymilk showed the highest ACE inhibitory potential. Bacteria-fermented soy foods had higher ACE inhibitory activity than fungus-fermented soy food, and 3 day germinated sprouts had higher ACE inhibition than those germinated for 5 and 7 days. The 11S hydrolysates showed higher ACE inhibitory capacity than 7S. Peptides of 1–4.5 kDa showed a higher contribution to reducing IC50. This study provides evidence that soy foods and isolated 7S and 11S proteins may be used as functional foods or ingredients to prevent or control hypertension.


Sign in / Sign up

Export Citation Format

Share Document