scholarly journals Mitragyna speciosa Korth Leaves Supplementation on Feed Utilization, Rumen Fermentation Efficiency, Microbial Population, and Methane Production In Vitro

Fermentation ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Kampanat Phesatcha ◽  
Burarat Phesatcha ◽  
Metha Wanapat ◽  
Anusorn Cherdthong

The objective of the research was to evaluate the different levels of Mitragyna speciosa Korth leaves powder (MSLP) added to rations with 60:40 or 40:60 roughage to a concentrate (R:C ratio) on in vitro nutrient digestibility, rumen fermentation characteristics, microbial population, and methane (CH4) production. The treatments were arranged according to a 2 × 8 factorial arrangement in a completely randomized design. The two factors contain the R:C ratio (60:40 and 40:60) and the levels of MSLP addition (0, 1, 2, 3, 4, 5, 6, and 7% of the total substrate). There was no interaction between the R:C ratio and MSLP supplementation on gas production kinetics, ammonia nitrogen (NH3-N), and microbial populations. The gas production rate constant for the insoluble fraction (c) was increased by the R:C ratio at (40:60), whilst there was no difference obtained among treatments for cumulative gas production, whilst the gas production rate constant for the insoluble fraction (c) was increased by the R:C ratio at 40:60. The concentration of NH3-N was influenced by the R:C ratio and MSLP addition both at 4 and 8 h after incubation. In vitro dry matter degradability (IVDMD) and organic matter degradability (IVOMD) were significantly improved by the R:C ratio and supplementation of MSLP at 12 h. Increasing the R:C ratio and MSLP concentrations increased total volatile fatty acid (VFA) and propionic acid (C3) concentrations while decreasing acetic acid (C2) and butyric acid (C4) concentrations; thus, the C2:C3 ratio was reduced. MSLP addition reduced protozoa and methanogen populations (p < 0.05). The calculated CH4 production was decreased (p < 0.05) by the R:C ratios at 40:60 and supplementation of MSLP. Finally, the addition of MSLP as a phytonutrient may improve nutrient degradability and rumen fermentation properties while decreasing protozoa, methanogen population, and CH4 production.

2021 ◽  
Vol 34 (1) ◽  
pp. 56-65
Author(s):  
Jiang Chun Wan ◽  
Kai Yun Xie ◽  
Yu Xiang Wang ◽  
Li Liu ◽  
Zhu Yu ◽  
...  

Objective: This study was conducted to investigate the effects of molasses and <i>Lactobacillus plantarum</i> on the ensiling quality and <i>in vitro</i> rumen fermentation of sudangrass silage prepared with or without wilting.Methods: The ensiling experiment, measured with 3 replicates, was carried out according to a 2×4 (wilted stages×additives) factorial treatment structure. Dry matter of the fresh (210 g/kg fresh matter) or wilted (305 g/kg fresh matter) sudangrass were ensiled (packed into 5.0-L plastic jars) without additive (control) or with molasses (M), <i>Lactobacillus plantarum</i> (LP), or molasses + <i>Lactobacillus plantarum</i> (M+LP). After 60 days of ensiling, the silages were analyzed for the chemical, fermentation, and <i>in vitro</i> characteristics.Results: After 60 days of ensiling, the fermentation parameters were affected by wilted, the additives and the interactions of wilted with the additives (p<0.05). The M+LP treatment at wilted had higher lactic acid levels and V-score (p<0.05) but lower pH values and butyric acid concentrations than the other treatments. In comparison with sudangrass before ensiling, after ensiling had lower dry matter and higher non-fibrous carbohydrate. The <i>in vitro</i> gas production, <i>in vitro</i> dry matter digestibility, <i>in vitro</i> crude protein digestibility, and <i>in vitro</i> acid fiber detergent digestibility changed under the effects of the additives. Significant interactions were observed between wilted and the additives in terms of <i>in vitro</i> gas production at 48 h, asymptotic gas production, gas production rate, half time, and the average gas production rate. The total volatile fatty acid levels in the additive treatments were higher than those in the control.Conclusion: Wilting and supplementation with molasses and <i>Lactobacillus plantarum</i> had the ability to improve the ensiling quality and <i>in vitro</i> nutrient digestibility of sudangrass silage. The M+LP treatment at wilted exhibited the strongest positive effects on silage quality and <i>in vitro</i> ruminal fermentation characteristics.


2018 ◽  
Vol 18 (3) ◽  
pp. 753-767 ◽  
Author(s):  
Amina Boussaada ◽  
Rabah Arhab ◽  
Serena Calabrò ◽  
Raffaella Grazioli ◽  
Maria Ferrara ◽  
...  

Abstract The aim of the research was to evaluate the effect of three Eucalyptus globulus extracts rich in phenolic compounds, especially flavonoids, on rumen fermentation, methane (CH4) production, organic matter degradability and protozoa population using an in vitro gas production technique. Four concentrations (0, 50, 75 and 100 mg) of three Eucalyptus extracts (ethyl acetate, n-butanol and aqueous) were added to a diet of ruminants (forage: concentrate ratio 60:40) and incubated at 39°C under anaerobiosis with buffered rumen fluid. After 24 h, the fermentation fluid was analysed for ammonia-N and volatile fatty acids (VFA). Organic matter degradability (OMD) and protozoa were also determined; in vitro gas production was also recorded and CH4 concentration was measured. Compared to the control, CH4 production was significantly lower for ethyl acetate extract (P<0.05), but higher for n-butanol and aqueous extracts. Production of ammonia- N was lower in all Eucalyptus extracts (P<0.05). Propionate production (P<0.05) increased for ethyl acetate and n-butanol extracts, whereas no effect was registered for VFA, for all Eucalyptus extracts. Ethyl acetate extract decreased in vitro OMD (P<0.05), whereas n-butanol and aqueous extracts were comparable to the control. Protozoa population decreased (P<0.05) for all extracts in comparison with the control. Eucalyptus ethyl acetate extract might be promising to be used as a potent anti-methanogenic additive. Moreover, the assessment of the right dosage seems to be important to decrease methane production, without reducing feed nutritional value.


2020 ◽  
Vol 60 (11) ◽  
pp. 1429 ◽  
Author(s):  
Chanadol Supapong ◽  
Anusorn Cherdthong

Context Feeding of fresh cassava root in ruminants is limited because it contains a high level of hydrocyanic acid (HCN), which is responsible for poisoning. Aims The objective of the present study was to evaluate the effect of sulfur levels supplementation in the fermented total mixed ration (FTMR) containing fresh cassava root as an energy source on the gas kinetics, ruminal fermentation, reduction of HCN concentration and nutrient digestibility in the in vitro gas production. Methods The experimental design was a 3 × 4 factorial in a completely randomised design. Dietary treatments contained factor A, which was three levels of sulfur supplementation at 0, 1 and 2% in FTMR, and factor B was ensiling time at 0, 7, 14 and 21 days respectively. Key results Concentration of HCN in FTMR was significantly reduced (P &lt; 0.05) by 73.7% when sulfur was supplemented in FTMR at 2%. The levels of HCN in FTMR were 2.89, 0.61, 0.61 and 0.49 ppm, for ensiling time of 0, 7, 14 and 21 days, respectively (P &lt; 0.01). HCN was reduced when ensiling started at 7 days. Gas production from soluble fractions (a) ranged from –1.2 to –2.4 and was not significant (P &gt; 0.05). Furthermore, gas production from the insoluble fraction (b) ranged from 48.8 to 53.9, and gas production rate constants for the insoluble fraction (c) ranged from 0.1 to 0.2. The potential extent of gas production (a + b) was also unchanged when the concentration of sulfur increased (P &gt; 0.05). In addition, there were no interactions between sulfur levels and ensiling times on all parameters (P &gt; 0.05). In contrast, cumulative gas production (at 96 h of incubation) was significantly different when sulfur increased at 2% (P &lt; 0.05), while ensiling times did not affect cumulative gas production. Ruminal pH was affected by FTMR and decreased with an ensiling time of 21 days, ranging from 6.0 to 6.1 after ensiling. Ensiling time did not affect ruminal ammonia-nitrogen concentration (P &gt; 0.05) among dietary treatments which ranged from 21.2 to 24.0 mg%. FTMR ensiled for 21 days had the highest in in vitro dry matter digestibility, an in vitro neutral detergent fibre and in vitro acid detergent fibre digestibility which were 61.0–62.5, 35.1–43.1 and 22.3–25.9% dry matter (DM) respectively. Regarding the concentration of total volatile fatty acid (VFA), acetic acid, propionic acid and butyric acid, ranges from 94.7 to 113.6 mmol/L, 59.3 to 67.4, 20.2 to 25.9 and 11.3 to 13.8 mol/100 mol, respectively, were observed and did not differ among treatments (P &gt; 0.05). The concentration of total VFA relative to the sulfur level and ensiling time had no effect on ruminal VFA concentrations. However, exceedingly high percentages of sulfur (2% of the DM) in the diet tend to increase total VFA concentration. Conclusions Using of 2% sulfur supplementation in TMR containing fresh cassava root fermented could improve the kinetics of gas and nutrient digestibility while maintaining ruminal fermentation parameters and the rate of HCN disappearance. Implications These findings should be examined in further in vivo experiments in order to increase animal performance.


Animals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Anuthida Seankamsorn ◽  
Anusorn Cherdthong ◽  
Metha Wanapat

It was hypothesized that the combination of glycerin and chitosan improves ruminal fermentation efficiency via an enhanced propionate (C3) and reduces in vitro CH4 production. This was explored through in vitro gas production with substrates containing crude glycerin, which replaced cassava chips in the studied ration. The experimental design was organized following a 3 × 3 factorial in completely randomized design and the arrangement of treatments were different levels of crude glycerin supplementations 0, 10.5, and 21% of total mixed ration (TMR) and chitosan levels were added at 0, 1, and 2% dry matter (DM) of substrate. Then, 0.5 g of TMR substrates were added into 40 mL bottles, together with respective doses of chitosan and then incubated at 39 °C. The dietary treatments were performed in three replicates within the incubation, and incubations were repeated on three separate days (runs). No interactions were found between crude glycerin and chitosan doses in terms of theoretical maximum of asymptotic gas production (b), rate of gas production (c), the discrete lag time prior to gas production (L), or the cumulative gas production at 96 h of incubation (p > 0.05). Cumulative gas production at 96 h of incubation was similar among the doses of crude glycerin and levels of chitosan, which ranged from 64.27 to 69.66 mL/g DM basis of substrate (p > 0.05). The concentration of ruminal NH3-N after 2 and 4 h of incubation ranged from 14.61 to 17.10 mg/dL and did not change with the addition of crude glycerin with chitosan (p > 0.05). The concentration of CH4 after 2 h of incubation did not change among treatments (p > 0.05), whereas after 4 h of incubation, CH4 synthesis was significantly reduced by enhancing doses of crude glycerin and chitosan (p < 0.05). The combination of 21% of crude glycerin in TMR with 2% chitosan depressed CH4 production as much as 53.67% when compared to the non-supplemented group. No significant crude glycerin and chitosan interaction effect was detected for in vitro digestibility of nutrients after incubation for 12 and 24 h using the in vitro gas production technique (p > 0.05). In addition, no significant changes (p > 0.05) were observed in total volatile fatty acids, acetate (C2) or butyrate content among treatments and between the main effects of crude glycerin with chitosan. At 4 h of incubation, ruminal C3 content and the C2 to C3 ratio changed significantly when crude glycerin and chitosan was added (p < 0.05). The 21% crude glycerin incorporate into TMR, in combination with 2% additional chitosan, increased C3 content by 26.41%, whereas the ratio of C2 to C3 was reduced by 31% when compared to the control group. Propionate concentration increased by 11.75% when increasing levels of chitosan at 2% of substrate, whereas the C2 to C3 ratio decreased by 13.99% compared to the 0% chitosan group. The inclusion of crude glycerin at 21% in TMR diets with chitosan supplementation at 2% enhanced ruminal propionate concentration and reduced methane production without causing any detrimental effect on the gas kinetics or nutrient digestibility.


2021 ◽  
Vol 51 (2) ◽  
pp. 271-279
Author(s):  
M.R. Kekana ◽  
D. Luseba ◽  
M.C. Muyu

Garlic contains secondary metabolites with antimicrobial properties that can alter nutrient digestibility and rumen fermentation, similar to other antimicrobial products. The objectives of the study were to evaluate the effects of garlic powder and garlic juice on in vitro nutrient digestibility, rumen fermentation, and gas production. The treatments consisted of control with no additives, garlic powder, and garlic juice at 0.5 ml and 1 ml. The digestibility of dry matter, crude protein and neutral detergent fibre were determined after 48 hours incubation. Rumen ammonia nitrogen and volatile fatty acids were determined at 12 hours and 24 hours incubation. The cumulative gas production was recorded periodically over 48 hours. The in vitro dry matter disappearance decreased with 1 ml of garlic juice compared with control. The crude protein degradability in garlic powder and garlic juice was lower than in control. Volatile fatty acids increased in all treatments. Individual volatile fatty acids were significantly different, especially propionate, whereas the acetate to propionate ratio was reduced by garlic juice, and ammonia nitrogen was reduced by garlic powder and 0.5 ml of garlic juice. The cumulative gas production increased significantly with both levels of garlic juice. The addition of garlic juice at 0.5 mL/100 ml could enhance the production of propionate, and reduce the acetate to propionate ratio, implying that the supply of hydrogen for methanogens was limited.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 207
Author(s):  
Chanadol Supapong ◽  
Anusorn Cherdthong

The use of cyanide-containing feed (HCN) is restricted because it causes prussic acid poisoning in animals. The objective of this study was to see how adding rhodanese enzyme to an HCN-containing diet affected gas dynamics, in vitro ruminal fermentation, HCN concentration reduction, and nutrient digestibility. A 3×4 factorial arrangement in a completely randomized design was used for the experiment. Factor A was the three levels of potassium cyanide (KCN) at 300, 450, and 600 ppm. Factor B was the four doses of rhodanese enzyme at 0, 0.65, 1, and 1.35 mg/104 ppm KCN, respectively. At 96 h of incubation, gas production from an insoluble fraction (b), potential extent (omit gas) (a + b), and cumulative gas were similar between KCN additions of 300 to 450 ppm (p > 0.05), whereas increasing KCN to 600 ppm significantly decreased those kinetics of gas (p < 0.05). Supplementation of rhodanese enzymes at 1.0 to 1.35 mg/104 ppm KCN enhanced cumulative gas when compared to the control group (p < 0.05). Increasing the dose of rhodanese up to 1.0 mg/104 ppm KCN significantly increased the rate of ruminal HCN degradation efficiency (DE) by 70% (p < 0.05). However, no further between the two factors was detected on ruminal fermentation and in vitro digestibility (p > 0.05). The concentration of ammonia-nitrogen (NH3-N) increased with increasing doses of KCN (p < 0.05), but remained unchanged with varying levels of rhodanese enzymes (p > 0.05). The in vitro dry matter digestibility (IVDMD) was suppressed when increasing doses of KCH were administered at 600 ppm, whereas supplementation of rhodanese enzymes at 1.0–1.35 mg/104 ppm KCN enhanced IVDMD (p < 0.05). Increasing doses of KCN affected reduced total volatile fatty acids (TVFA) concentration, which was lowest when 600 ppm was added (p < 0.05). Nevertheless, the concentration of TVFAs increased when rhodanese enzymes were included by 1.0–1.35 mg/104 ppm KCN (p < 0.05). Based on this study, it could be concluded that supplementation of rhodaneses enzyme at 1.0–1.35 mg/104 ppm KCN could enhance cumulative gas, digestibility, and TVAF, as well as lowering ruminal HCN concentration.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jia-nan Dong ◽  
Song-ze Li ◽  
Xue Chen ◽  
Gui-xin Qin ◽  
Tao Wang ◽  
...  

High levels of starch is known to have positive effects on both energy supply and milk yield but increases the risk of rumen acidosis. The use of sugar as a non-structural carbohydrate could circumvent this risk while maintaining the benefits, but its effects and that of the simultaneous use of both sugar and starch are not as well-understood. This study aimed to evaluate the effects of different combinations of sugar and starch concentrations on ruminal fermentation and bacterial community composition in vitro in a 4 ×4 factorial experiment. Sixteen dietary treatments were formulated with 4 levels of sugar (6, 8, 10, and 12% of dietary dry matter), and 4 levels of starch (21, 23, 25, and 27% of dietary dry matter). Samples were taken at 0.5, 1, 3, 6, 12, and 24 h after cultivation to determine the disappearance rate of dry matter, rumen fermentation parameters and bacterial community composition. Butyric acid, gas production, and Treponema abundance were significantly influenced by the sugar level. The pH, acetic acid, and propionic acid levels were significantly influenced by starch levels. However, the interactive effect of sugar and starch was only observed on the rate of dry matter disappearance. Furthermore, different combinations of starch and sugar had different effects on volatile fatty acid production rate, gas production rate, and dry matter disappearance rate. The production rate of rumen fermentation parameters in the high sugar group was higher. Additionally, increasing the sugar content in the diet did not change the main phylum composition in the rumen, but significantly increased the relative abundance of Bacteroidetes and Firmicutes phyla, while the relative abundance of Proteobacteria was reduced. At the genus level, the high glucose group showed significantly higher relative abundance of Treponema (P &lt; 0.05) and significantly lower relative abundance of Ruminobacter, Ruminococcus, and Streptococcus (P &lt; 0.05). In conclusion, different combinations of sugar and starch concentrations have inconsistent effects on rumen fermentation characteristics, suggesting that the starch in diets cannot be simply replaced with sugar; the combined effects of sugar and starch should be considered to improve the feed utilization rate.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1482
Author(s):  
Nguyen Thi Huyen ◽  
Ines Martinez ◽  
Wilbert Pellikaan

The current study has two objectives: (1) To determine the effect of different lactic acid bacteria (LAB) strains’ inoculant on silage quality of fresh ryegrass (FR) and rain-treated ryegrass (RTR), and (2) to find the optimal way (silage inoculant vs. direct-fed microbial (DFM)) to use LAB strains in order to improve nutrient digestibility and reduce methane emission (CH4) in ruminant production. Five LAB strains were tested, Lactiplantibacillus plantarum AGR-1, L. plantarum AGR-2, Lactococcus lactis subsp. lactis biovar diacetylactis AGR-3, L. lactis subsp. lactis AGR-4 and L. lactis subsp. lactis AGR-5. Each LAB strain was inoculated at 106 cfu/g fresh weight into the FR and the RTR and ensiled for 60 days. After ensiling, the effect of LAB strains included as a DFM or silage inoculant on rumen digestibility and CH4 production were measured using an in vitro gas production system with three separate runs. The in vitro experiment consisted of 24 treatments (2 grasses (FR and RTR) × 2 ways (inoculant or DFM) × 6 strains (5 LAB strains + 1 Control)). The results indicated that the LAB strains’ inoculant treatments reduced (p < 0.0001) the dry matter (DM) losses, the NH3 concentration (p < 0.0001) and the pH (p = 0.0019) upon ensiling in both the FR and the RTR. The lowest values in dry matter (DM) loss and NH3 concentration were found in the L. plantarum (AGR-2) and L. lactis (AGR-5). The in vitro CH4 production was lower for silages inoculated with L. plantarum (AGR-1, p = 0.0054), L. lactis (AGR-4, p = 0.026), L. lactis (AGR-5, p = 0.029) and L. plantarum (AGR-2, p = 0.090), compared to the control. Methane production was lower (p = 0.0027) for LABs when used as silage inoculants, compared to being used as DFM. Lactic acid bacteria used as silage inoculants increased (p ≤ 0.0001) the in vitro DM and organic matter (OM) degradability both in the FR and the RTR, whereas LAB strains used as DFM showed no such effect. The DM and OM digestibility were highest in the L. plantarum (AGR-1, p = 0.0175). Among the five LAB strains used in the current study, L. plantarum (AGR-2) was the best candidate to improve silage quality. Our observations suggest that these LAB strains are most promising when used as silage inoculants and to be confirmed in vivo.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 468-468
Author(s):  
Sandra Suescun-Ospina ◽  
Nelson Vera ◽  
Rita Astudillo ◽  
Jorge Avila-Stagno

Abstract Grape marc (GM) is a viticulture by-product used as cattle supplement in periods of shortage of conventional feed sources. It contains fats, high concentrations of polyphenols and has been reported to reduce enteric methane (CH4) emissions. In-vitro batch culture was used to study the effects of substitution of mixed hay (MH) for a traditional Chilean variety (Vitis vinifera “País”) of GM on in vitro dry matter disappearance (IVDMD), rumen fermentation parameters (short chain fatty acids, pH, partitioning factor), gas and CH4 production in a 60% forage diet (dry matter, DM). The study was a randomized complete design with 3 treatments and 3 replicates, incubated for 24 h at 39º C. Treatments were: T1 (Control): 20% MH, 40% corn silage, 40% concentrate; T2 = 10% MH, 10% GM, 40% corn silage, 40% concentrate; T3 = 20% GM, 40% corn silage, 40% concentrate. Means were compared with the Tukey test (P &lt; 0.05), and polynomial contrasts. Substitution of MH with GM significantly reduced ammonia nitrogen (NH3-N) by 50% (P &lt; 0.05), although it did not affect IVDMD, gas production or other rumen fermentation parameters (P &gt; 0.05). Total CH4 (mg) linearly decreased (P = 0.013) as concentrations of GM increased. Methane production (mg/g DM incubated) and yield (mg/g DM digested) decreased linearly (P = 0.002 and P = 0.003, respectively) as inclusion of GM increased. Inclusion of GM at 20% reduced CH4 production by 19% and CH4 yield by 16.4%. These results indicate that partial substitution of dietary fiber sources with traditional Chilean País GM in high fiber diets is a viable feeding alternative, and can decrease environmental impact (lower CH4 and ammonia emissions) of ruminant livestock, without negatively affecting rumen fermentation parameters.


2021 ◽  
Vol 31 (1) ◽  
pp. 13
Author(s):  
Mozart Nuzul Aprilliza AM ◽  
Yenny Nur Anggraeny ◽  
Elizabeth Wina

Enteric fermentation and its corresponding to methane emissions take place in many wild and domestic ruminant species, such as deer, buffalo, cattle, goats, sheep. Ruminant animals are different from other animals in that they have a rumen, a large fore-stomach with a complex microbial environment. A resulting of this process is methane (CH4), which has a global warming potential (25 times that of carbon dioxide (CO2)). Because the digestion process is not 100% efficient, some of the energy intake is lost in the form of methane. Recently, natural plant products, such as tea leaves which are often inexpensive and environmentally safe have been introduced in methane mitigation strategies. Tea leaves have potential for use as an additives in ruminant diets. The adding of catechin 10-40 g/Kg DM were able to declined methane emission 7.4–13.5%. Furthermore, catechin could decrease the methane production. Catechin decreased CH4 production both in vitro and in vivo. Catechin causes direct inhibition of methanogens as well as may act as hydrogen sinks during degradation by rumen microbes via cleavage of ring structures and reductive dehydroxylation reactions. The objective of this paper is to review existing knowledge related to discuss how catechins can act as methane-lowering agents from rumen fermentation on ruminants.


Sign in / Sign up

Export Citation Format

Share Document