Fine-Scale Fire Spread in Pine Straw

Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 69
Author(s):  
Daryn Sagel ◽  
Kevin Speer ◽  
Scott Pokswinski ◽  
Bryan Quaife

Most wildland and prescribed fire spread occurs through ground fuels, and the rate of spread (RoS) in such environments is often summarized with empirical models that assume uniform environmental conditions and produce a unique RoS. On the other hand, representing the effects of local, small-scale variations of fuel and wind experienced in the field is challenging and, for landscape-scale models, impractical. Moreover, the level of uncertainty associated with characterizing RoS and flame dynamics in the presence of turbulent flow demonstrates the need for further understanding of fire dynamics at small scales in realistic settings. This work describes adapted computer vision techniques used to form fine-scale measurements of the spatially and temporally varying RoS in a natural setting. These algorithms are applied to infrared and visible images of a small-scale prescribed burn of a quasi-homogeneous pine needle bed under stationary wind conditions. A large number of distinct fire front displacements are then used statistically to analyze the fire spread. We find that the fine-scale forward RoS is characterized by an exponential distribution, suggesting a model for fire spread as a random process at this scale.

2006 ◽  
Vol 15 (2) ◽  
pp. 179 ◽  
Author(s):  
J. Ramiro Martínez-de Dios ◽  
Jorge C. André ◽  
João C. Gonçalves ◽  
Begoña Ch. Arrue ◽  
Aníbal Ollero ◽  
...  

This paper presents an experimental method using computer-based image processing techniques of visual and infrared movies of a propagating fire front, taken from one or more cameras, to supply the time evolutions of the fire front shape and position, flame inclination angle, height, and base width. As secondary outputs, it also provides the fire front rate of spread and a 3D graphical model of the fire front that can be rendered from any virtual view. The method is automatic and non-intrusive, has space–time resolution close to continuum and can be run in real-time or deferred modes. It is demonstrated in simple laboratory experiments in beds of pine needles set upon an inclinable burn table, with point and linear ignitions, but can be extended to open field situations.


2001 ◽  
Vol 31 (3) ◽  
pp. 401-409 ◽  
Author(s):  
A L Sullivan ◽  
I K Knight

Most experimental fires, by nature, are small scale ([Formula: see text]100 m), and rate of spread measurements are taken over periods of several minutes. The aim of empirical fire modellers is to ascribe a single measure of rate of forward spread over a period to a single scalar measure of wind. The actual wind affecting the fire is unmeasurable; its value must be estimated from remote anemometry. Observation and consideration of the spatial and temporal statistics of the wind has allowed confidence limits to be placed upon the accuracy with which the measured wind reflects the wind acting on the fire front. Experimental data to verify these estimates was gathered during Project Vesta, a study into high-intensity fires in dry eucalypt forests. An equation that quantifies the accuracy of the estimate of wind affecting the fire front is given. The accuracy increases with time scale, size of the fire front, and density of anemometry. When applied to a measured wind speed taken some distance from the fire, it gives a useful estimate of the likely variation of the corresponding wind at the fire front.


1988 ◽  
Vol 18 (4) ◽  
pp. 391-397 ◽  
Author(s):  
Ralph M. Nelson Jr. ◽  
Carl W. Adkins

Data for the behavior of 59 experimental wind-driven fires were extracted from the literature for use in determining a correlation among several variables known to influence the rate of forest fire spread. Also included in the correlation were unpublished data from six field fires. This information consisted of behavior measurements on small-scale burns of artificial fuels in the laboratory and measurements on field fires in diverse fuels such as grass and logging slash. Fire intensities ranged from about 40 to 4600 kW/m. Dimensional analysis was used to derive three variables governing the fire spread process. These variables, rearranged into a dimensionless rate of spread and a dimensionless wind speed, are strongly correlated and lead to a simple expression for fire spread rate in terms of fuel consumption, ambient wind speed, and flame residence time.


2016 ◽  
Vol 25 (9) ◽  
pp. 970 ◽  
Author(s):  
J. E. Hilton ◽  
C. Miller ◽  
A. L. Sullivan

Computational simulations of wildfires require a model for the two-dimensional expansion of a fire perimeter. Although many expressions exist for the one-dimensional rate of spread of a fire front, there are currently no agreed mathematical expressions for the two-dimensional outward speed of a fire perimeter. Multiple two-dimensional shapes such as elliptical and oval-shaped perimeters have been observed and reported in the literature, and several studies have attempted to classify these shapes using geometric approximations. Here we show that a two-dimensional outward speed based on a power series results in a perimeter that can match many of these observed shapes. The power series is based on the dot product between the vector normal to the perimeter and a fixed wind vector. The formulation allows the evolution and shape of a fire perimeter to be expressed using a small set of scalar coefficients. The formulation is implemented using the level set method, and computed perimeters are shown to provide a good match to perimeters of small-scale experimental fires. The method could provide a framework for statistical matching of wildfire shapes or be used to improve current wildfire prediction systems.


Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 81
Author(s):  
Henry Hart ◽  
Daniel D. B. Perrakis ◽  
Stephen W. Taylor ◽  
Christopher Bone ◽  
Claudio Bozzini

In this study, we investigate a novel application of the photogrammetric monoplotting technique for assessing wildfires. We demonstrate the use of the software program WSL Monoplotting Tool (MPT) to georeference operational oblique aerial wildfire photographs taken during airtanker response in the early stages of fire growth. We located the position of the fire front in georeferenced pairs of photos from five fires taken 31–118 min apart, and calculated the head fire spread distance and head fire rate of spread (HROS). Our example photos were taken 0.7 to 4.7 km from fire fronts, with camera angles of incidence from −19 to −50° to image centre. Using high quality images with detailed landscape features, it is possible to identify fire front positions with high precision; in our example data, the mean 3D error was 0.533 m and the maximum 3D error for individual fire runs was less than 3 m. This resulted in a maximum HROS error due to monoplotting of only ~0.5%. We then compared HROS estimates with predictions from the Canadian Fire Behavior Prediction System, with differences mainly attributed to model error or uncertainty in weather and fuel inputs. This method can be used to obtain observations to validate fire spread models or create new empirical relationships where databases of such wildfire photos exist. Our initial work suggests that monophotogrammetry can provide reproducible estimates of fire front position, spread distance and rate of spread with high accuracy, and could potentially be used to characterize other fire features such as flame and smoke plume dimensions and spotting.


2018 ◽  
Vol 27 (1) ◽  
pp. 52 ◽  
Author(s):  
J. R. Raposo ◽  
D. X. Viegas ◽  
X. Xie ◽  
M. Almeida ◽  
A. R. Figueiredo ◽  
...  

Junction fires, which involve the merging of two linear fire fronts intersecting at a small angle, are associated with very intense fire behaviour. The dynamic displacement of the intersection point of the two lines and the flow along the symmetry plane of the fire are analysed for symmetric boundary conditions. It is observed that the velocity of displacement of this point increases very rapidly owing to strong convective effects created by the fire that are similar to those of an eruptive fire. The change of fire geometry and of its associated flow gradually blocks the rate of spread increase and creates a strong deceleration of the fire, which ends up behaving like a linear fire front. Results from laboratory and field-scale experiments, using various fuel beds and slope angles and from a large-scale fire show that the processes are similar at a wide range of scales with little dependence on the initial boundary conditions. Numerical simulation of the heat flux from two flame surfaces to an element of the fuel bed show that radiation can be considered as the main mechanism of fire spread only during the deceleration phase of the fire.


1995 ◽  
Vol 5 (3) ◽  
pp. 143 ◽  
Author(s):  
RS McAlpine

It has been theorized that the amount of fuel involved in a fire front can influence the rate of spread of the fire. Three data sets are examined in an attempt to prove this relationship. The first, a Canadian Forest Service database of over 400 experimental, wild, and prescribed fires showed a weak relationship in some fuel complexes. The second, a series of field experimental fires conducted to isolate the relationship, showed a small effect. The final data set, from a series of 47 small plots (3m x 3m) burned with a variety of fuel loadings, also show a weak relationship. While a relationship was shown to exist, it is debatable whether it should be included in a fire behavior prediction system. Inherent errors associated with predicting fuel consumption can be compounded, causing additional, more critical, errors with the derived fire spread rate.


2014 ◽  
Vol 14 (9) ◽  
pp. 2359-2371 ◽  
Author(s):  
C. C. Simpson ◽  
J. J. Sharples ◽  
J. P. Evans

Abstract. Vorticity-driven lateral fire spread (VLS) is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep leeward slope in a direction approximately transverse to the background winds. VLS is often accompanied by a downwind extension of the active flaming region and intense pyro-convection. In this study, the WRF-Fire (WRF stands for Weather Research and Forecasting) coupled atmosphere–fire model is used to examine the sensitivity of resolving VLS to both the horizontal and vertical grid spacing, and the fire-to-atmosphere coupling from within the model framework. The atmospheric horizontal and vertical grid spacing are varied between 25 and 90 m, and the fire-to-atmosphere coupling is either enabled or disabled. At high spatial resolutions, the inclusion of fire-to-atmosphere coupling increases the upslope and lateral rate of spread by factors of up to 2.7 and 9.5, respectively. This increase in the upslope and lateral rate of spread diminishes at coarser spatial resolutions, and VLS is not modelled for a horizontal and vertical grid spacing of 90 m. The lateral fire spread is driven by fire whirls formed due to an interaction between the background winds and the vertical circulation generated at the flank of the fire front as part of the pyro-convective updraft. The laterally advancing fire fronts become the dominant contributors to the extreme pyro-convection. The results presented in this study demonstrate that both high spatial resolution and two-way atmosphere–fire coupling are required to model VLS with WRF-Fire.


2018 ◽  
Vol 27 (2) ◽  
pp. e007
Author(s):  
Omer Kucuk ◽  
Ertugrul Bilgili ◽  
Rifat Uzumcu

Aim of the study: To develop regression models for estimating the rate of surface fire spread in a thinned even-aged black pine stand (Pinus nigra J.F. Arnold subsp. nigra var. caramanica (Loudon) Rehder).Area of the study: The study was carried out within a thinned black pine forest located in the Kastamonu Forest District, northwestern Turkey. The study area is located at 546819, 4577880 UTM.Material and methods: A total of 33 small scale surface fires were ignited under varying weather and fuel conditions. Line ignition was used during the burnings. Surface fuels consisted generally of thinned material (needle+branches).Main results: Within the stand, surface fuel loading ranged from 3.0 to 10.2 kg/m2. Wind speed ranged from 0.3 to 8.4 km/h. Needle moisture content ranged from 8 to 15%. The rate of fire spread ranged from 0.47 to 6.92 m/min. Relationships between the rate of fire spread and fuel and weather conditions were determined through regression analyses.Research highlights: Wind speed was the most important factor on the rate of fire spread and explained 85% of the observed variation in the surface fire rate of spread within a stand.


2016 ◽  
Vol 25 (2) ◽  
pp. 229 ◽  
Author(s):  
Anthony S. Bova ◽  
William E. Mell ◽  
Chad M. Hoffman

Simulating an advancing fire front may be achieved within a Lagrangian or Eulerian framework. In the former, independently moving markers are connected to form a fire front, whereas in the latter, values representing the moving front are calculated at points within a fixed grid. Despite a mathematical equivalence between the two methods, it is not clear that both will produce the same results when implemented numerically. Here, we describe simulations of fire spread created using a level set Eulerian approach (as implemented in the wildland–urban interface fire dynamics simulator, WFDS) and a marker method (as implemented in FARSITE). Simulations of surface fire spread, in two different fuels and over domains of increasing topographical complexity, are compared to evaluate the difference in outcomes between the two models. The differences between the results of the two models are minor, especially compared with the uncertainties inherent in the modelling of fire spread.


Sign in / Sign up

Export Citation Format

Share Document