scholarly journals Fish Upstream Passage through Gauging Stations: Experiences with Iberian Barbel in Flat-V Weirs

Fishes ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 81
Author(s):  
Francisco Javier Sanz-Ronda ◽  
Francisco Javier Bravo-Córdoba ◽  
Ana García-Vega ◽  
Jorge Valbuena-Castro ◽  
Andrés Martínez-de-Azagra ◽  
...  

The monitoring of river discharge is vital for the correct management of water resources. Flat-V gauging weirs are facilities used worldwide for measuring discharge. These structures consist of a small weir with a triangular cross-section and a flat “V”-shaped notch. Their extensive use is a consequence of their utility in the measurement of both low and high flow conditions. However, depending on their size, local morphology and river discharge can act as full or partial hydraulic barriers to fish migration. To address this concern, the present work studies fish passage performance over flat-V weirs considering their hydraulic performance. For this, radio-tracking and video-monitoring observations were combined with computational fluid dynamics (CFD) models in two flat-V weirs, using Iberian barbel (Luciobarbus bocagei) as the target species. Results showed that fish passage is conditioned by both hydraulic and behavioral processes, providing evidence for scenarios in which flat-V weirs may act as full or partial barriers to upstream movements. For the studied flat-V weirs, a discharge range of 0.27–8 m3/s, with a water drop difference between upstream and downstream water levels lower than 0.7 m and a depth downstream of the weir of higher than 0.3 m can be considered an effective passage situation for barbels. These findings are of interest for quantifying flat-V weir impacts, for engineering applications and for establishing managing or retrofitting actions when required.

Author(s):  
Francisco Javier Sanz-Ronda ◽  
Francisco Javier Bravo-Córdoba ◽  
Ana García-Vega ◽  
Jorge Valbuena-Castro ◽  
Andrés Manuel Martínez-de-Azagra ◽  
...  

The monitoring of river discharge is vital for the correct management of water resources. A worldwide facility used for measuring discharge are flat-V gauging weirs. These structures consist of a small weir, with a triangular cross-section and a flat “V”-shaped notch. Their extensive use is a consequence of their utility in the measurement of both low and high flow conditions. However, depending on their size, local morphology and river discharge can act as full or partial hydraulic barriers to fish migration. To give answer to this question, the present work studies fish passage performance over flat-V weirs considering their hydraulic performance. For this, radio-tracking and video monitoring observations were combined with computational fluid dynamics (CFD) models in two flat-V weirs, using Iberian barbel (Luciobarbus bocagei) as target species. Results show that fish passage is conditioned by both hydraulic and behavioral processes, providing evidences about the scenarios where flat-V weirs may act as full or partial barriers to upstream movements. For the studied flat-V weirs, a discharge range of 0.27-8 m3/s, with a water drop difference between upstream and downstream water levels lower than 0.7 m and a depth downstream the weir higher than 0.30 m can be considered as an effective passage situation for barbels. These findings are of interest to quantify flat-V weir impacts, for engineering applications and to establish managing or retrofitting actions when required.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1186
Author(s):  
Francisco Javier Bravo-Córdoba ◽  
Juan Francisco Fuentes-Pérez ◽  
Jorge Valbuena-Castro ◽  
Andrés Martínez de Azagra-Paredes ◽  
Francisco Javier Sanz-Ronda

With the aim of building more compact fishways and adapting them to field conditions to improve their location by fish, it is common to use turning pools, reducing the longitudinal development of the construction. However, depending on their design, turning pools may affect the hydraulic performance of the fishway and consequently the fish passage. To study these phenomena, turning pools in a vertical slot and in different configurations of submerged notches with bottom orifice fishway types were assessed. Both types of fishways were studied using numerical 3D models via OpenFOAM, a computational fluid dynamics software, in combination with fish responses, assessed with PIT (Passive Integrated Transponder) tag telemetry for three different species of potamodromous cyprinids in several fishways. Results show differences between the hydrodynamics of straight and turning pools, with lower values in the hydrodynamic variables in turning pools. Regarding fish behavior, the ascent was slower in turning pools but with no effect on passage success and without being a problem for fish migration. This information validates the use of turning pools as a key design component for fishways for studied species.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 769 ◽  
Author(s):  
Jorge Badules ◽  
Mariano Vidal ◽  
Antonio Boné ◽  
Emilio Gil ◽  
F. Javier García-Ramos

A computational fluid dynamics (CFD) model of the fluid velocities generated by the agitation system of an air-assisted sprayer was developed and validated by practical experiments in a laboratory. The model was developed considering different settings of the agitation system: Three water levels in the tank (1000, 2000, and 3000 L); two different numbers of active nozzles (2 or 4); and three working pressures of the agitation circuit (8, 10, or 12 bar). Actual measurements of the fluid velocity into the tank were taken using an acoustic Doppler velocimeter (ADV). CFD simulations made it possible to estimate fluid velocities at 38% of the measuring points with relative errors of less than 30%. Additionally, the CFD models have allowed the correct prediction of the general behavior of the fluid in the tank considering mean velocities depending on the setting parameters of the agitation system (water level in the tank, hydraulic circuit pressure, and number of active nozzles).


2014 ◽  
Vol 905 ◽  
pp. 369-373
Author(s):  
Choo Tai Ho ◽  
Yoon Hyeon Cheol ◽  
Yun Gwan Seon ◽  
Noh Hyun Suk ◽  
Bae Chang Yeon

The estimation of a river discharge by using a mean velocity equation is very convenient and rational. Nevertheless, a research on an equation calculating a mean velocity in a river was not entirely satisfactory after the development of Chezy and Mannings formulas which are uniform equations. In this paper, accordingly, the mean velocity in unsteady flow conditions which are shown loop form properties was estimated by using a new mean velocity formula derived from Chius 2-D velocity formula. The results showed that the proposed method was more accurate in estimating discharge, when compared with the conventional formulas.


Author(s):  
D. Amirante ◽  
Z. Sun ◽  
J. W. Chew ◽  
N. J. Hills ◽  
N. R. Atkins

Reynolds-Averaged Navier-Stokes (RANS) computations have been conducted to investigate the flow and heat transfer between two co-rotating discs with an axial throughflow of cooling air and a radial bleed introduced from the shroud. The computational fluid dynamics (CFD) models have been coupled with a thermal model of the test rig, and the predicted metal temperature compared with the thermocouple data. CFD solutions are shown to vary from a buoyancy driven regime to a forced convection regime, depending on the radial inflow rate prescribed at the shroud. At a high radial inflow rate, the computations show an excellent agreement with the measured temperatures through a transient rig condition. At a low radial inflow rate, the cavity flow is destabilized by the thermal stratification. Good qualitative agreement with the measurements is shown, although a significant over-prediction of disc temperatures is observed. This is associated with under prediction of the penetration of the axial throughflow into the cavity. The mismatch could be the result of strong sensitivity to the prescribed inlet conditions, in addition to possible shortcomings in the turbulence modeling.


Author(s):  
Sunita Kruger ◽  
Leon Pretorius

In this paper, the influence of various bench arrangements on the microclimate inside a two-span greenhouse is numerically investigated using three-dimensional Computational Fluid Dynamics (CFD) models. Longitudinal and peninsular arrangements are investigated for both leeward and windward opened roof ventilators. The velocity and temperature distributions at plant level (1m) were of particular interest. The research in this paper is an extension of two-dimensional work conducted previously [1]. Results indicate that bench layouts inside the greenhouse have a significant effect on the microclimate at plant level. It was found that vent opening direction (leeward or windward) influences the velocity and temperature distributions at plant level noticeably. Results also indicated that in general, the leeward facing greenhouses containing either type of bench arrangement exhibit a lower velocity distribution at plant level compared to windward facing greenhouses. The latter type of greenhouses has regions with relatively high velocities at plant level which could cause some concern. The scalar plots indicate that more stagnant areas of low velocity appear for the leeward facing greenhouses. The windward facing greenhouses also display more heterogeneity at plant level as far as temperature is concerned.


2018 ◽  
Vol 22 (9) ◽  
pp. 4815-4842 ◽  
Author(s):  
Vinícius A. Siqueira ◽  
Rodrigo C. D. Paiva ◽  
Ayan S. Fleischmann ◽  
Fernando M. Fan ◽  
Anderson L. Ruhoff ◽  
...  

Abstract. Providing reliable estimates of streamflow and hydrological fluxes is a major challenge for water resources management over national and transnational basins in South America. Global hydrological models and land surface models are a possible solution to simulate the terrestrial water cycle at the continental scale, but issues about parameterization and limitations in representing lowland river systems can place constraints on these models to meet local needs. In an attempt to overcome such limitations, we extended a regional, fully coupled hydrologic–hydrodynamic model (MGB; Modelo hidrológico de Grandes Bacias) to the continental domain of South America and assessed its performance using daily river discharge, water levels from independent sources (in situ, satellite altimetry), estimates of terrestrial water storage (TWS) and evapotranspiration (ET) from remote sensing and other available global datasets. In addition, river discharge was compared with outputs from global models acquired through the eartH2Observe project (HTESSEL/CaMa-Flood, LISFLOOD and WaterGAP3), providing the first cross-scale assessment (regional/continental  ×  global models) that makes use of spatially distributed, daily discharge data. A satisfactory representation of discharge and water levels was obtained (Nash–Sutcliffe efficiency, NSE > 0.6 in 55 % of the cases) and the continental model was able to capture patterns of seasonality and magnitude of TWS and ET, especially over the largest basins of South America. After the comparison with global models, we found that it is possible to obtain considerable improvement on daily river discharge, even by using current global forcing data, just by combining parameterization and better routing physics based on regional experience. Issues about the potential sources of errors related to both global- and continental-scale modeling are discussed, as well as future directions for improving large-scale model applications in this continent. We hope that our study provides important insights to reduce the gap between global and regional hydrological modeling communities.


2018 ◽  
Vol 45 ◽  
pp. 00110
Author(s):  
Magda Hudak

Spur dykes are structures for regulating rivers. They are designed for medium water levels, when spur dyke tops are above the water surface. In the central section of the Odra River the water level is changeable, and the spur dykes work in different hydrological conditions: as non-submerged and submerged. Correct recognition of the plant structure growing on the spur dykes is of great importance in the context of the subsequent allocation of its measure related to the hydraulic action, among others coefficients of resistance of plant zones and refers mainly to grasses. In hydraulic calculations, it is required to determine the value of flow resistance coefficients. In such a departure, the flow is omitted in the area occupied by vegetation. Therefore, it is necessary to know the quantitative characteristics of overgrowth. Vegetation should be presented in the form of a model reflecting the impact of plants growing on the spur dykes and their impact on the water flow conditions in the river. Literature data are not very numerous and are still awake unsatisfied. The paper presents the results of research on the density of vegetation on the Odra River in the Nowa Sól region.


2021 ◽  
Author(s):  
Erwan Garel ◽  
Ping Zhang ◽  
Huayang Cai

Abstract. Observations indicate that the fortnightly fluctuations in mean water level increase in amplitude along the lower half of a tide-dominated estuary (The Guadiana estuary) with negligible river discharge but remain constant upstream. Analytical solutions reproducing the semi-diurnal wave propagation shows that this pattern results from reflection effects at the estuary head. The phase difference between velocity and elevation increases from the mouth to the head (where the wave has a standing nature) as the high and low water levels get progressively closer to slack water. Thus, the tidal (flood-ebb) asymmetry in discharge is reduced in the upstream direction. It becomes negligible along the upper estuary half, as the mean sea level remains constant despite increased friction due to wave shoaling. Observations of a flat mean water level along a significant portion of an upper estuary, easier to obtain than the phase difference, can therefore indicate significant reflection of the propagating semi-diurnal wave at the head. Details of the analytical model shows that changes in the mean depth or length of semi-arid estuaries, in particular for macrotidal locations, affect the fortnightly tide amplitude, and thus the upstream mass transport and inundation regime. This has significant potential impacts on the estuarine environment.


Sign in / Sign up

Export Citation Format

Share Document