scholarly journals Topographically Controlled Marangoni-Rayleigh-Bénard Convection in Liquid Metals

Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 447
Author(s):  
Marcello Lappa ◽  
Aydin Sayar ◽  
Wasim Waris

Convection induced in a layer of liquid with a top free surface by a distribution of heating elements at the bottom can be seen as a variant of standard Marangoni–Rayleigh–Bénard Convection where in place of a flat boundary at constant temperature delimiting the system from below, the underlying thermal inhomogeneity reflects the existence of a topography. In the present work, this problem is investigated numerically through solution of the governing equations for mass, momentum and energy in their complete, three-dimensional time-dependent and non-linear form. Emphasis is given to a class of liquids for which thermal diffusion is expected to dominate over viscous effects (liquid metals). Fixing the Rayleigh and Marangoni number to 104 and 5 × 103, respectively, the sensitivity of the problem to the geometrical, kinematic and thermal boundary conditions is investigated parametrically by changing: the number and spacing of heating elements, their vertical extension, the nature of the lateral boundary (solid walls or periodic boundary) and the thermal behavior of the portions of bottom wall between adjoining elements (assumed to be either adiabatic or at the same temperature of the hot blocks). It is shown that, like the parent phenomena, this type of thermal flow is extremely sensitive to the specific conditions considered. The topography can be used to exert a control on the emerging flow in terms of temporal response and patterning behavior.

2010 ◽  
Vol 648 ◽  
pp. 509-519 ◽  
Author(s):  
JÖRG SCHUMACHER ◽  
OLIVIER PAULUIS

We study shallow moist Rayleigh–Bénard convection in the Boussinesq approximation in three-dimensional direct numerical simulations. The thermodynamics of phase changes is approximated by a piecewise linear equation of state close to the phase boundary. The impact of phase changes on the turbulent fluctuations and the transfer of buoyancy through the layer is discussed as a function of the Rayleigh number and the ability to form liquid water. The enhanced buoyancy flux due to phase changes is compared with dry convection reference cases and related to the cloud cover in the convection layer. This study indicates that the moist Rayleigh–Bénard problem offers a practical framework for the development and evaluation of parameterizations for atmospheric convection.


2020 ◽  
Vol 23 (4) ◽  
pp. 635-647
Author(s):  
Kodai Fujita ◽  
Yuji Tasaka ◽  
Takatoshi Yanagisawa ◽  
Daisuke Noto ◽  
Yuichi Murai

2009 ◽  
Vol 619 ◽  
pp. 127-145 ◽  
Author(s):  
G. ACCARY ◽  
P. BONTOUX ◽  
B. ZAPPOLI

This paper presents state of the art three-dimensional numerical simulations of the Rayleigh–Bénard convection in a supercritical fluid. We consider a fluid slightly above its critical point in a cube-shaped cell heated from below with insulated sidewalls; the thermodynamic equilibrium of the fluid is described by the van der Waals equation of state. The acoustic filtering of the Navier–Stokes equations is revisited to account for the strong stratification of the fluid induced by its high compressibility under the effect of its own weight. The hydrodynamic stability of the fluid is briefly reviewed and we then focus on the convective regime and the transition to turbulence. Direct numerical simulations are carried out using a finite volume method for Rayleigh numbers varying from 106 up to 108. A spatiotemporal description of the flow is presented from the convection onset until the attainment of a statistically steady state of heat transfer. This description concerns mainly the identification of the vortical structures in the flow, the distribution of the Nusselt numbers on the horizontal isothermal walls, the structure of the temperature field and the global thermal balance of the cavity. We focus on the influence of the strong stratification of the fluid on the penetrability of the convective structures in the core of the cavity and on its global thermal balance. Finally, a comparison with the case of a perfect gas, at the same Rayleigh number, is presented.


Sign in / Sign up

Export Citation Format

Share Document