scholarly journals Analysis of Cultivable Microbial Community during Kimchi Fermentation Using MALDI-TOF MS

Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1068
Author(s):  
Eiseul Kim ◽  
Seung-Min Yang ◽  
Hae-Yeong Kim

Kimchi, a traditional Korean fermented vegetable, has received considerable attention for its health-promoting effects. This study analyzes the cultivable microbial community in kimchi fermented at different temperatures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to comprehensively understand the factors affecting the quality of kimchi. Of the 5204 strains isolated from kimchi, aligned with the in-house database, 4467 (85.8%) were correctly identified at the species level. The fermentation temperature affected the microbial community by varying the pH and acidity, which was mainly caused by temperature-dependent competition between the different lactic acid bacteria (LAB) species in kimchi. LAB, such as Levilactobacillus (Lb.) brevis and Lactiplantibacillus (Lpb.) plantarum associated with rancidity and tissue softening, proliferated faster at higher temperatures than at low temperature. In addition, LAB, such as Latilactobacillus (Lat.) sakei and Leuconostoc (Leu.) mesenteroides, which produce beneficial substances and flavor, were mainly distributed in kimchi fermented at 4 °C. This study shows as a novelty that MALDI-TOF MS is a robust and economically affordable method for investigating viable microbial communities in kimchi.

Author(s):  
Cledir Santos ◽  
Paula Galeano ◽  
Reginaldo Lima Neto ◽  
Manoel Marques Evangelista Oliveira ◽  
Nelson Lima

Abstract Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is now used as a routine technique for the fast and reliable identification of fungi at the species level and, currently, it represents an important phenotypic methodology based on proteomic profiles. The main limitations to MALDI-TOF MS for fungal identification are related to sample quality (e.g. quality of biological material such as rigidity or pigmentation of cell walls), sample preparation (e.g. the myriad of sample preparation methodologies that deliver different data sets to different MALDI-TOF MS databases) and the databases themselves (e.g. the 'black-box' commercial databases). This chapter presents an overview and discussion of the use of MALDI-TOF MS for fungal identification. The major known limitations of the technique for fungal taxonomy, and how to overcome these, are also discussed.


2014 ◽  
Vol 63 (9) ◽  
pp. 1143-1147 ◽  
Author(s):  
Katherine Woods ◽  
David Beighton ◽  
John L. Klein

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) provides rapid, accurate and cost-effective identification of a range of bacteria and is rapidly changing the face of routine diagnostic microbiology. However, certain groups of bacteria, for example streptococci (in particular viridans or non-haemolytic streptococci), are less reliably identified by this method. We studied the performance of MALDI-TOF MS for identification of the ‘Streptococcus anginosus group’ (SAG) to species level. In total, 116 stored bacteraemia isolates identified by conventional methods as belonging to the SAG were analysed by MALDI-TOF MS. Partial 16S rRNA gene sequencing, supplemented with sialidase activity testing, was performed on all isolates to provide ‘gold standard’ identification against which to compare MALDI-TOF MS performance. Overall, 100 % of isolates were correctly identified to the genus level and 93.1 % to the species level by MALDI-TOF MS. However, only 77.6 % were correctly identified to the genus level and 59.5 % to the species level by a MALDI-TOF MS direct transfer method alone. Use of a rapid in situ extraction method significantly improved identification rates when compared with the direct transfer method (P<0.001). We recommend routine use of this method to reduce the number of time-consuming full extractions required for identification of this group of bacteria by MALDI-TOF MS in the routine diagnostic laboratory. Only 22 % (1/9) of Streptococcus intermedius isolates were reliably identified by MALDI-TOF MS to the species level, even after full extraction. MALDI-TOF MS reliably identifies S. anginosus and Streptococcus constellatus to the species level but does not reliably identify S. intermedius.


2021 ◽  
Vol 9 (3) ◽  
pp. 661
Author(s):  
Adriana Calderaro ◽  
Mirko Buttrini ◽  
Monica Martinelli ◽  
Benedetta Farina ◽  
Tiziano Moro ◽  
...  

Typing methods are needed for epidemiological tracking of new emerging and hypervirulent strains because of the growing incidence, severity and mortality of Clostridioides difficile infections (CDI). The aim of this study was the evaluation of a typing Matrix-Assisted Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS (T-MALDI)) method for the rapid classification of the circulating C. difficile strains in comparison with polymerase chain reaction (PCR)-ribotyping results. Among 95 C. difficile strains, 10 ribotypes (PR1–PR10) were identified by PCR-ribotyping. In particular, 93.7% of the isolates (89/95) were grouped in five ribotypes (PR1–PR5). For T-MALDI, two classifying algorithm models (CAM) were tested: the first CAM involved all 10 ribotypes whereas the second one only the PR1–PR5 ribotypes. Better performance was obtained using the second CAM: recognition capability of 100%, cross-validation of 96.6% and agreement of 98.4% (60 correctly typed strains, limited to PR1–PR5 classification, out of 61 examined strains) with PCR-ribotyping results. T-MALDI seems to represent an alternative to PCR-ribotyping in terms of reproducibility, set up time and costs, as well as a useful tool in epidemiological investigation for the detection of C. difficile clusters (either among CAM included ribotypes or out-of-CAM ribotypes) involved in outbreaks.


2016 ◽  
Vol 10 (1) ◽  
pp. 202-208 ◽  
Author(s):  
Marisa Almuzara ◽  
Claudia Barberis ◽  
Viviana Rojas Velázquez ◽  
Maria Soledad Ramirez ◽  
Angela Famiglietti ◽  
...  

Objective:To evaluate the performance of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) by using 190 Catalase-negative Gram-Positive Cocci (GPC) clinical isolates.Methods:All isolates were identified by conventional phenotypic tests following the proposed scheme by Ruoff and Christensen and MALDI-TOF MS (Bruker Daltonics, BD, Bremen, Germany). Two different extraction methods (direct transfer formic acid method on spot and ethanol formic acid extraction method) and different cut-offs for genus/specie level identification were used. The score cut-offs recommended by the manufacturer (≥ 2.000 for species-level, 1.700 to 1.999 for genus level and <1.700 no reliable identification) and lower cut-off scores (≥1.500 for genus level, ≥ 1.700 for species-level and score <1.500 no reliable identification) were considered for identification. A minimum difference of 10% between the top and next closest score was required for a different genus or species.MALDI-TOF MS identification was considered correct when the result obtained from MS database agreed with the phenotypic identification result.When both methods gave discordant results, the 16S rDNA orsodAgenes sequencing was considered as the gold standard identification method. The results obtained by MS concordant with genes sequencing, although discordant with conventional phenotyping, were considered correct. MS results discordant with 16S orsodA identification were considered incorrect.Results:Using the score cut-offs recommended by the manufacturer, 97.37% and 81.05% were correctly identified to genus and species level, respectively. On the other hand, using lower cut-off scores for identification, 97.89% and 94.21% isolates were correctly identified to genus and species level respectively by MALDI-TOF MS and no significant differences between the results obtained with two extraction methods were obtained.Conclusion:The results obtained suggest that MALDI-TOF MS has the potential of being an accurate tool for Catalase-negative GPC identification even for those species with difficult diagnosis asHelcococcus,Abiotrophia,Granulicatella, among others. Nevertheless, expansion of the library, especially including more strains with different spectra on the same species might overcome potential “intraspecies” variability problems. Moreover, a decrease of the identification scores for species and genus-level identification must be considered since it may improve the MALDI-TOF MS accuracy.


2017 ◽  
Vol 29 (5) ◽  
pp. 622-627 ◽  
Author(s):  
Rinosh J. Mani ◽  
Anil J. Thachil ◽  
Akhilesh Ramachandran

Accurate and timely identification of infectious etiologies is of great significance in veterinary microbiology, especially for critical diseases such as strangles, a highly contagious disease of horses caused by Streptococcus equi subsp. equi. We evaluated a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) platform for use in species- and subspecies-level identification of S. equi isolates from horses and compared it with an automated biochemical system. We used 25 clinical isolates each of S. equi subsp. equi and S. equi subsp. zooepidemicus. Using the MALDI-TOF MS platform, it was possible to correctly identify all 50 isolates to the species level. Unique mass peaks were identified in the bacterial peptide mass spectra generated by MALDI-TOF MS, which can be used for accurate subspecies-level identification of S. equi. Mass peaks (mass/charge, m/ z) 6,751.9 ± 1.4 (mean ± standard deviation) and 5,958.1 ± 1.3 were found to be unique to S. equi subsp. equi and S. equi subsp. zooepidemicus, respectively. The automated biochemical system correctly identified 47 of 50 of the isolates to the species level as S. equi, whereas at the subspecies level, 24 of 25 S. equi subsp. equi isolates and 22 of 25 S. equi subsp. zooepidemicus isolates were correctly identified. Our results indicate that MALDI-TOF MS can be used for accurate species- and subspecies-level identification of S. equi.


2017 ◽  
Vol 55 (5) ◽  
pp. 1437-1445 ◽  
Author(s):  
Maya Beganovic ◽  
Michael Costello ◽  
Sarah M. Wieczorkiewicz

ABSTRACT Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) decreases the time to organism identification and improves clinical and financial outcomes. The purpose of this study was to evaluate the impact of MALDI-TOF MS alone versus MALDI-TOF MS combined with real-time, pharmacist-driven, antimicrobial stewardship (AMS) intervention on patient outcomes. This single-center, pre-post, quasiexperimental study evaluated hospitalized patients with positive blood cultures identified via MALDI-TOF MS combined with prospective AMS intervention compared to a control cohort with MALDI-TOF MS identification without AMS intervention. AMS intervention included: real-time MALDI-TOF MS pharmacist notification and prospective AMS provider feedback. The primary outcome was the time to optimal therapy (TTOT). A total of 252 blood cultures, 126 in each group, were included in the final analysis. MALDI-TOF MS plus AMS intervention significantly reduced the overall TTOT (75.17 versus 43.06 h; P < 0.001), the Gram-positive contaminant TTOT (48.21 versus 11.75 h; P < 0.001), the Gram-negative infection (GNI) TTOT (71.83 versus 35.98 h; P < 0.001), and the overall hospital length of stay (LOS; 15.03 versus 9.02 days; P = 0.021). The TTOT for Gram-positive infection (GPI) was improved (64.04 versus 41.61 h; P = 0.082). For GPI, the hospital LOS (14.64 versus 10.31 days; P = 0.002) and length of antimicrobial therapy 24.30 versus 18.97 days; P = 0.018) were reduced. For GNI, the time to microbiologic clearance (51.13 versus 34.51 h; P < 0.001), the hospital LOS (15.40 versus 7.90 days; P = 0.027), and the intensive care unit LOS (5.55 versus 1.19 days; P = 0.035) were reduced. To achieve optimal outcomes, rapid identification with MALDI-TOF MS combined with real-time AMS intervention is more impactful than MALDI-TOF MS alone.


2021 ◽  
Vol 12 ◽  
Author(s):  
Keyi Yu ◽  
Zhenzhou Huang ◽  
Ying Li ◽  
Qingbo Fu ◽  
Lirong Lin ◽  
...  

Shewanella species are widely distributed in the aquatic environment and aquatic organisms. They are opportunistic human pathogens with increasing clinical infections reported in recent years. However, there is a lack of a rapid and accurate method to identify Shewanella species. We evaluated here matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for rapid identification of Shewanella. A peptide mass reference spectra (PMRS) database was constructed for the type strains of 36 Shewanella species. The main spectrum projection (MSP) cluster dendrogram showed that the type strains of Shewanella species can be effectively distinguished according to the different MS fingerprinting. The PMRS database was validated using 125 Shewanella test strains isolated from various sources and periods; 92.8% (n = 116) of the strains were correctly identified at the species level, compared with the results of multilocus sequence analysis (MLSA), which was previously shown to be a method for identifying Shewanella at the species level. The misidentified strains (n = 9) by MALDI-TOF MS involved five species of two groups, i.e., Shewanella algae–Shewanella chilikensis–Shewanella indica and Shewanella seohaensis–Shewanella xiamenensis. We then identified and defined species-specific biomarker peaks of the 36 species using the type strains and validated these selected biomarkers using 125 test strains. Our study demonstrated that MALDI-TOF MS was a reliable and powerful tool for the rapid identification of Shewanella strains at the species level.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhenxin Wang ◽  
Quanqing Zhang ◽  
Huali Shen ◽  
Pengyuan Yang ◽  
Xinwen Zhou

In recent years, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) plays an essential role in the analysis of polymers. To acquire a more reliable strategy for polymer profiling, we characterized four representative polymers including polyethylene glycol 6000, polyvinylpyrrolidone K12, polymer polyol KPOP-5040, and polyether polyol DL-4000. The preparation methods of these four polymer samples have been optimized from six aspects, including matrix, cationization reagent, solvent, mixing ratio of cationization reagent to polymer, mixing ratio of matrix to polymer, and laser intensity. After investigating the effects of seven commonly used matrices on the ionization efficiency of four polymers, trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene] malononitrile (DCTB) was found to be the only matrix suitable for the analysis of all the four polymers. Our experimental results suggested that different polymers showed a certain preference for different cationization reagents. For example, the polymer polyol KPOP-5040 was suitable for sodium iodide as the cationization reagent, while polyvinylpyrrolidone K12 was more suitable for silver trifluoroacetate (AgTFA). For the choice of solvent, tetrahydrofuran is a reagent with rapid evaporation and a wide range of dissolution which can achieve the best results for the analysis of four polymers. The optimized method was successfully applied to the identification of DSPE-PEG-NH2 with different polymerized degrees. This MALDI-TOF strategy potentially provided the supplementary function through the polymer’s application in biomedical and visible probing.


2021 ◽  
Author(s):  
kwenrich not provided

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) can accurately identify bloodstream pathogens directly from positive blood culture bottles without the need to wait for agar plate growth. In this study, 2% sodium dodecyl sulfate (SDS) detergent was assessed to determine its benefit in the removal of interfering cellular components for testing on the Bruker Microflex LT MALDI-TOF MS instrument with the Biotyper® CA system. Additionally, the use of a heat-drying step was evaluated for performance improvement over conventional air-drying of samples on the MALDI steel target plate. The modified method with 2% SDS outperformed the in-house protocol in overall success with percentage scores of 91% and 55% ( respectively). The data results support the potential of applying a simple lysing step to an existing in-house extraction method and the use of modified drying methods. The modified techniques evaluated in this study proved beneficial for identifying most blood culture pathogens encountered in the clinical laboratory, and they can allow for reduced turnaround times and more appropriate antibiotic treatments.


2019 ◽  
Vol 36 (No. 6) ◽  
pp. 452-458 ◽  
Author(s):  
Štěpán Koudelka ◽  
Tereza Gelbíčová ◽  
Markéta Procházková ◽  
Renáta Karpíšková

The identification of Listeria species, lineages and serotypes remains a crucial issue not only in epidemic surveys, but also in monitoring of the diversity of bacteria in the food chain. The aim of this study was identification of L. monocytogenes strains at lineage and serotype level using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The performance of MALDI-TOF MS was tested to identify L. monocytogenes into two lineages (I and II) and four serotypes (1/2a, 1/2b, 1/2c and 4b) the most commonly found in humans and food. Total of 227 L. monocytogenes strains from different sources were subjected to the study. Some of strains (112) were used for main spectrum profile (MSP) library creation. Other strains of interest (115) were then correctly identified on the lineage level comparing with the library by MALDI-TOF MS analysis using Biotyper (90%) and ClinPro Tools (100%) software. The serotype identification with 55.7% (Biotyper) and 67.8% (ClinPro Tools) accuracy is rather a proof that under given conditions the method has not big potential to be used for serotyping. However, MALDI-TOF MS has a potential to identify lineages of L. monocytogenes of food and human origin.


Sign in / Sign up

Export Citation Format

Share Document