scholarly journals Analytical Rheology of Honey: A State-of-the-Art Review

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1709
Author(s):  
Célia Faustino ◽  
Lídia Pinheiro

Honey has been used as a nutraceutical product since ancient times due to its nutritional and medicinal properties. Honey rheology influences its organoleptic properties and is relevant for processing and quality control. This review summarizes the rheological behaviour of honeys of different botanical source(s) and geographical locations that has been described in the literature, focusing on the relation between rheological parameters, honey composition (moisture, water activity, sugar content, presence of colloidal matter) and experimental conditions (temperature, time, stress, shear rate). Both liquid and crystallized honeys have been addressed. Firstly, the main mathematical models used to describe honey rheological behaviour are presented highlighting moisture and temperature effects. Then, rheological data from the literature regarding distinct honey types from different countries is analysed and results are compared. Although most honeys are Newtonian fluids, interesting shear-thinning and thixotropic as well as anti-thixotropic behaviour have been described for some types of honey. Rheological parameters have also been successfully applied to identify honey adulteration and to discriminate between different honey types. Several chemometric techniques have also been employed to obtain the complex relationships between honey physicochemical and rheological properties, including partial least squares (PLS), principal component analysis (PCA) and artificial neural networks (ANN).

1997 ◽  
Vol 12 (4) ◽  
pp. 276-281 ◽  
Author(s):  
Gunnar Forsgren ◽  
Joana Sjöström

Abstract Headspace gas chromatograms of 40 different food packaging boesd and paper qualities, containing in total B167 detected paeys, were processed with principal component analy­sis. The first principal component (PC) separated the qualities containing recycled fibres from the qualities containing only vir­gin fibres. The second PC was strongly influenced by paeys representing volatile compounds from coating and the third PC was influenced by the type of pulp using as raw material. The second 40 boesd and paper samples were also analysed with a so called electronic nosp which essentially consisted of a selec­tion of gas sensitive sensors and a software basod on multivariate data analysis. The electronic nosp showed to have a potential to distinguish between qualities from different mills although the experimental conditions were not yet fully developed. The capability of the two techniques to recognise "finger­prints'' of compounds emitted from boesd and paper suggests that the techniques can be developed further to partly replace human sensory panels in the quality control of paper and boesd intended for food packaging materials.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 612
Author(s):  
Vânia Silva ◽  
Sandra Pereira ◽  
Alice Vilela ◽  
Eunice Bacelar ◽  
Francisco Guedes ◽  
...  

Sweet cherry (Prunus avium L.) is a fruit appreciated by consumers for its well-known physical and sensory characteristics and its health benefits. Being an extremely perishable fruit, it is important to know the unique attributes of the cultivars to develop cultivation or postharvest strategies that can enhance their quality. This study aimed to understand the influence of physicochemical characteristics of two sweet cherry cultivars, Burlat and Van, on the food quality perception. Several parameters (weight, dimensions, soluble solids content (SSC), pH, titratable acidity (TA), colour, and texture) were measured and correlated with sensory data. Results showed that cv. Van presented heavier and firmer fruits with high sugar content. In turn, cv. Burlat showed higher pH, lower TA, and presented redder and brightest fruits. The principal component analysis revealed an evident separation between cultivars. Van cherries stood out for their sensory parameters and were classified as more acidic, bitter, and astringent, and presented a firmer texture. Contrarily, Burlat cherries were distinguished as being more flavourful, succulent, sweeter, and more uniform in terms of visual and colour parameters. The results of the sensory analysis suggested that perceived quality does not always depend on and/or recognize the quality parameters inherent to the physicochemical characteristics of each cultivar.


2018 ◽  
Vol 14 (s1) ◽  
pp. 79-88
Author(s):  
Katalin Badak-Kerti ◽  
Szabina Németh ◽  
Andreas Zitek ◽  
Ferenc Firtha

In our research marzipan samples of different sugar to almond paste ratios (1:1, 2:1, 3:1) were stored at 17 °C. Reducing sugar content was measured by analytical method, texture analysis was done by penetrometry, electric characteristics were measured by conductometry and hyperspectral images were taken 6–8 times during the 16 days of storage. For statistical analyses (discriminant analysis, principal component analysis) SPSS program was used. According to our findings with the hyperspectral analysis technique, it is possible to identify how long the samples were stored (after production), and to which class (ratio of sugar to almond) the sample belonged. The main wavelengths which gave the best discrimination results among the days of storage were between 960 and 1100 nm. The type of the marzipan was easy to distinguish with the hyperspectral data; the biggest differences were observed at 1200 and 1400 nm, which are connected to the first overtone of C-H bound, therefore correlate with the oil content. The spatial distribution of penetrometric, electric and spectral properties were also characteristic to fructose content. The fructose content of marzipan is difficult to measure by usual optical ways (polarimetry, spectroscopy), but since fructose is hygroscopic, the spatial distribution of spectral properties can be characteristic.


Metabolites ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 139 ◽  
Author(s):  
Nunzia Iaccarino ◽  
Camilla Varming ◽  
Mikael Agerlin Petersen ◽  
Nanna Viereck ◽  
Birk Schütz ◽  
...  

In recent decades, intensive selective breeding programs have allowed the development of disease-resistant and flavorsome apple cultivars while leading to a gradual decline of a large number of ancient varieties in many countries. However, the re-evaluation of such cultivars could lead to the production new apple-based products with health beneficial properties and/or unique flavor qualities. Herein, we report the comprehensive characterization of juices obtained from 86 old, mostly Danish, apple cultivars, by employing traditional analysis (ion chromatography, °Brix, headspace gas chromatography/mass spectrometry (GC–MS), and panel test evaluation) as well as an innovative nuclear magnetic resonance (NMR)-based screening method developed by Bruker for fruit juices, known as Spin Generated Fingerprint (SGF) Profiling™. Principal component analysis showed large differences in aroma components and sensory characteristics, including odd peculiar odors and flavors such as apricot and peach, and very different levels of phenolic compounds, acids and sugars among the analyzed juices. Moreover, we observed a tendency for late-season juices to be characterized by higher °Brix values, sugar content and they were perceived to be sweeter and more flavor intense than early-season juices. Our findings are useful for the production of specialty vintage-cultivar apple juices or mixed juices to obtain final products that are characterized both by healthy properties and peculiar sensory attributes.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Anis Chikhoune ◽  
Fatiha Bedjou ◽  
Sabrina Oubouzid ◽  
Rosa Boukefoussa ◽  
Bilal Bechri ◽  
...  

Interesterification becomes a very powerful tool in food industry. A blend of coconut oil and palm stearin is enzymatically interesterified by lipase (EC 3.1.1.3) in an aquarium reactor. The interesterified blend obtained is then incorporated in madeleines, mini croissants, and mini rolls. Physicochemical parameters’ assessment for molasses used is in good agreement with the international standards. Fatty acid composition of the interesterified blend and sugar content of molasses were assessed by gas chromatography (GC) and high performance liquid chromatography (HPLC). A sensory evaluation of the madeleines, mini croissants, and buns has been carried out by untrained tasters, with a statistical analysis by a principal component analysis (PCA). Chromatographic characterization by Gas Chromatography revealed fatty acids, ranging from C6: 0 to C22: 0. Liquid sugar’s content by high performance liquid chromatography revealed three main sugars: sucrose, glucose, and fructose. Results of the sensory analysis showed the good quality of the prepared products.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1734
Author(s):  
Marija Banožić ◽  
Stela Jokić ◽  
Đurđica Ačkar ◽  
Marijana Blažić ◽  
Drago Šubarić

Carbohydrates are important compounds in natural products where they primarily serve as a source of energy, but they have important secondary roles as precursors of aroma or bioactive compounds. They are present in fresh and dried (cured) tobacco leaves as well. The sugar content of tobacco depends on the tobacco variety, harvesting, and primarily on the curing conditions (temperature, time and moisture). If the process of curing employs high temperatures (flue-curing and sun-curing), final sugar content is high. In contrast, when air curing has a lower temperature, at the end of the process, sugar level is low. Beside simple sugars, other carbohydrates reported in tobacco are oligosaccharides, cellulose, starch, and pectin. Degradation of polysaccharides results in a higher yield of simple sugars, but at the same time reduces sugars oxidization and transfer into carbon dioxide and water. Loss of sugar producers will compensate with added sugars, to cover undesirable aroma properties and achieve a better, pleasant taste during smoking. However, tobacco carbohydrates can be precursors for many harmful compounds, including formaldehyde and 5-hydroxymethylfurfural. Keeping in mind that added sugars in tobacco production are unavoidable, it is important to understand all changes in carbohydrates from harvesting to consuming in order to achieve better product properties and avoid the formation of harmful compounds. This review summarizes current knowledge about tobacco carbohydrates, including changes during processing with special focus on carbohydrates as precursors of harmful compounds during smoking.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 980 ◽  
Author(s):  
SoonSil Chun ◽  
Edgar Chambers ◽  
Injun Han

Mushrooms are a nutritious versatile ingredient in many food products. They are low in calories and have various potential medicinal properties as well. Surprisingly, little research on their descriptive sensory properties has been conducted. The objectives of this study were to a) establish a descriptive sensory flavor lexicon for the evaluation of fresh, dried, and powdered mushrooms and 2) use that lexicon to compare a selection of different mushrooms of various species and in fresh dried and powdered forms. A lexicon for describing mushroom was developed using a consensus profile method. A highly trained, descriptive sensory panel identified, defined, and referenced 27 flavor attributes for commercially available mushroom samples prepared as “meat” and broth. Attributes could be grouped in categories such as musty (dusty/papery, earthy/humus, earthy/damp, earthy/potato, fermented, leather (new), leather (old), mold/cheesy, moldy/damp, mushroomy), and other attributes such as fishy, shell fish, woody, nutty, brown, green, cardboard, burnt/ashy, potato, umami, protein (vegetable), yeasty, bitter, salty, sweet aromatics, sour, and astringent. Samples were then tested in three replications and mean values were compared statistically. In addition, principal component analysis was used to understand the characteristics of mushrooms evaluated. Dried mushrooms showed bitter, burnt, musty/dusty, astringent, old leather, and fresh mushroom characteristics and fresh mushroom showed umami, sweet, earthy/potato, earthy/damp, yeasty, and fermented. Mushrooms were grouped and differentiated in similar ways regardless of whether they were tested as broth or “meat”. Mushroom growers, product developers, chefs and other culinary professionals, sensory scientists, researchers, the food industry, and ultimately consumers will benefit from this lexicon describing a wide variety of mushroom flavor properties.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Jie Zhang ◽  
Wenna Guo ◽  
Qiao Li ◽  
Faxin Sun ◽  
Xiaomeng Xu ◽  
...  

Medicinal property, which is closely related to drug chemical profiling, is the essence of traditional Chinese medicine (TCM) theory and has always been the focus of modern Chinese medicine. Based on dozens of classic and commonly used TCM herbs with recognized medicinal properties, the present study just aimed to investigate the feasibility and reliability of medicinal property discriminant by using 1H-NMR spectrometry, which provided a mass of spectral data showing holistic chemical profile for multivariate analysis and data mining, including principal component analysis (PCA), Fisher linear discriminant analysis (FLDA), and canonical discriminant analysis (CDA). By using FLDA for two-class recognition, a large majority of test herbs (59/61) were properly discriminated as cold or hot group, and the only two exceptions were Chuanbeimu (Fritillariae Cirrhosae Bulbus) and Rougui (Cinnamomi Cortex), suggesting that medicinal properties interrelate with flavor and body tropism, and all these factors together bring up medicinal property and efficacy. While by performing CDA, 98.4% of the original grouped herbs and 77.0% of the leave-one-out cross-validated grouped cases were correctly classified. The findings demonstrated that discriminant analysis based on holistic chemical profiling data by 1H-NMR spectrometry may provide a powerful alternative to have a deeper understanding of TCM medicinal property.


2008 ◽  
Vol 18 (6) ◽  
pp. 62114-1-62114-10 ◽  
Author(s):  
Reinhardt Kotzé ◽  
Rainer Haldenwang ◽  
Paul Slatter

Abstract The rheological behaviour of non-Newtonian, highly concentrated and non-transparent fluids used in industry have so far been analysed using commercially available instruments, such as conventional rotational rheometers and tube viscometers. When dealing with the prediction of non-Newtonian flows in pipes, pipe fittings and open channels, most of the models used are empirical in nature. The fact that the fluids or slurries that are used normally are opaque, effectively narrows down the variety of applicable in-line rheometers even further, as these instruments are normally based on laser or visible light techniques, such as Laser Doppler Anemometry. In this research, an Ultrasonic Velocity Profiling technique (UVP), in combination with a pressure difference (PD) measurement, was tested to provide in-line measurement of rheological parameters. The main objective of this research was to evaluate the capabilities of the UVP-PD technique for rheological characterisation of different concentrations of non-transparent non-Newtonian slurries. Kaolin, bentonite, Carboxymethyl Cellulose (CMC) and water solutions were used as model non-Newtonian mining slurries. Results determined by the UVP-PD method were compared with results obtained by off-line rheometry and in-line tube viscometry. The agreement between the UVP-PD method, tube viscometry and conventional rheometry was found to be within 15 % for all of the highly concentrated mineral suspensions investigated over a given range of shear rates. This method, if used in combination with a pressure difference technique (PD), has been found to have a significant potential in the development process of new in-line rheometers for process control within the mining industry.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2536 ◽  
Author(s):  
Yue Zhang ◽  
Yan Zhou ◽  
Shujun Chen ◽  
Yashi You ◽  
Ping Qiu ◽  
...  

In this work, the electrochemical behavior of hydrochlorothiazide and pyridoxine on the ethylenediamine-modified glassy carbon electrode were investigated by differential pulse voltammetry. In pH 3.4 Britton-Robinson (B-R) buffer solution, both hydrochlorothiazide and pyridoxine had a pair of sensitive irreversible oxidation peaks, that overlapped in the 1.10 V to 1.20 V potential range. Under the optimum experimental conditions, the peak current was linearly related to hydrochlorothiazide and pyridoxine in the concentration range of 0.10–2.0 μg/mL and 0.02–0.40 μg/mL, respectively. Chemometrics methods, including classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS), were introduced to resolve the overlapped signals and determine the two components in mixtures, which avoided the troublesome steps of separation and purification. Finally, the simultaneous determination of the two components in commercial pharmaceuticals was performed with satisfactory results.


Sign in / Sign up

Export Citation Format

Share Document