scholarly journals Factors Influencing Sulforaphane Content in Broccoli Sprouts and Subsequent Sulforaphane Extraction

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1927
Author(s):  
Jan Tříska ◽  
Josef Balík ◽  
Milan Houška ◽  
Pavla Novotná ◽  
Martin Magner ◽  
...  

Broccoli sprouts contain 10–100 times higher levels of sulforaphane than mature plants, something that has been well known since 1997. Sulforaphane has a whole range of unique biological properties, and it is especially an inducer of phase 2 detoxication enzymes. Therefore, its use has been intensively studied in the field of health and nutrition. The formation of sulforaphane is controlled by the epithiospecifier protein, a myrosinase co-factor, which is temperature-specific. This paper studies the influence of temperature, heating time, the addition of myrosinase in the form of Raphanus sativus sprouts in constant ratio to broccoli sprouts, and other technological steps on the final sulforaphane content in broccoli sprout homogenates. These technological steps are very important for preserving sulforaphane in broccoli sprouts, but there are some limitations concerning the amount of sulforaphane. We focused, therefore, on the extraction process, using suitable β-cyclodextrin, hexane and ethanol, with the goal of increasing the amount of sulforaphane in the final extract, thus stabilizing it and reducing the required amount sulforaphane needed, e.g., as a dietary supplement.

2020 ◽  
Vol 15 (2) ◽  
pp. 45-53
Author(s):  
Nguyen Thi Thu Thuy ◽  
Do Hoang Giang ◽  
Pham Khac Linh ◽  
Nguyen Tien Dat

Polysaccharides from the pods of haricot vert (Phaseolus vulgaris L.) were extracted using a simple heating method, by varying extracting temperature, heating time, solid-to-liquid ratio, and solvent compositions. The obtained results were processed using statistical analysis that helped to identify the optimal conditions for the polysaccharides’ extraction process. This study represents a promising production method of bioactive polysaccharides extract in the food and pharmaceutical industry.


2013 ◽  
Vol 788 ◽  
pp. 57-60
Author(s):  
Chun Cao ◽  
Chun Dong Zhu ◽  
Chen Fu

Warm pressing forming technology has been gradually applied to the forming of automotive friction materials. How to ensure product performance to achieve the target at the same time achieve the maximum energy saving is the research focus of this study. In this paper, by using finite element method, the field of automotive friction materials in warm pressing forming was analyzed, reveals the relationship between the temperature field and the heating temperature/heating time. Furthermore, the energy consumption was analyzed and compared it with hot pressing forming process. The results will have significant guiding to the process optimization in warm pressing forming.


1999 ◽  
Vol 73 (3) ◽  
pp. 2263-2269 ◽  
Author(s):  
Pascal Cherpillod ◽  
Karin Beck ◽  
Andreas Zurbriggen ◽  
Riccardo Wittek

ABSTRACT The biological properties of wild-type A75/17 and cell culture-adapted Onderstepoort canine distemper virus differ markedly. To learn more about the molecular basis for these differences, we have isolated and sequenced the protein-coding regions of the attachment and fusion proteins of wild-type canine distemper virus strain A75/17. In the attachment protein, a total of 57 amino acid differences were observed between the Onderstepoort strain and strain A75/17, and these were distributed evenly over the entire protein. Interestingly, the attachment protein of strain A75/17 contained an extension of three amino acids at the C terminus. Expression studies showed that the attachment protein of strain A75/17 had a higher apparent molecular mass than the attachment protein of the Onderstepoort strain, in both the presence and absence of tunicamycin. In the fusion protein, 60 amino acid differences were observed between the two strains, of which 44 were clustered in the much smaller F2 portion of the molecule. Significantly, the AUG that has been proposed as a translation initiation codon in the Onderstepoort strain is an AUA codon in strain A75/17. Detailed mutation analyses showed that both the first and second AUGs of strain A75/17 are the major translation initiation sites of the fusion protein. Similar analyses demonstrated that, also in the Onderstepoort strain, the first two AUGs are the translation initiation codons which contribute most to the generation of precursor molecules yielding the mature form of the fusion protein.


2011 ◽  
Vol 2011 ◽  
pp. 1-5
Author(s):  
Peng Bing ◽  
Wang Jia ◽  
Chai Li-yuan ◽  
Wang Yun-yan ◽  
Mao Ai-li

The photocatalytic degradation rates of methyl orange and antibacterial properties of nano-Ag/TiO2 thin film on ceramics were investigated in this study. XRD was used to detect the structure of film to clarify the impacts on the rates and properties. The effect of film layers, heating temperature, heating time, and embedding of Ag+ on the degradation rates and antibacterial properties were ascertained. The nano-Ag/TiO2 film of 3 layers with AgNO3 3% embedded and treated at 350°C for 2 h would exhibit good performance.


1970 ◽  
Vol 16 (1) ◽  
pp. 3-6 ◽  
Author(s):  
Michael P Veniamin ◽  
Catherine Vakirtzi-Lemonias

Abstract The chemical pathway of the carbamidodiacetyl colorimetric assay was investigated. The experimental variables that were studied include reaction temperature, heating time, and the ratio of the mineral acid mixture to the reactants. Evidence is presented establishing the involvement of either 7- or 8-methyl, or 7,8-dimethyltetrahydroimidazo(4,5-d)imidazole-2,5-diones as chromogens, all three being equally acceptable.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Ami Sotokawauchi ◽  
Yuji Ishibashi ◽  
Takanori Matsui ◽  
Sho-ichi Yamagishi

We have previously shown that sulforaphane not only inhibits formation of advanced glycation end products (AGEs) but also exerts anti-inflammatory effects on AGE-exposed human umbilical vein endothelial cells (HUVECs) and AGE-injected rat aortae. Here we examined the effects of aqueous extract of glucoraphanin-rich broccoli sprouts on formation of AGEs and then investigated whether the extract could attenuate inflammatory or oxidative stress reactions in tumor necrosis factor-alpha (TNF-α)- or AGE-exposed HUVECs. Fresh broccoli sprouts were homogenized in phosphate-buffered saline and filtered through a gauze. After centrifugation, clear extract was obtained. AGE formation was measured by enzyme-linked immunosorbent assay. Gene expression was evaluated by real-time reverse transcription-polymerase chain reaction. Reactive oxygen species (ROS) generation were measured using a fluorescent dye. Five percent broccoli sprout extract inhibited the formation of AGEs, reduced basal gene expressions of monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1,) and receptor for AGEs (RAGE), and upregulated endothelial nitric oxide synthase (eNOS) mRNA levels in HUVECs. TNF-α upregulated MCP-1, ICAM-1, and RAGE mRNA levels in HUVECs, all of which were attenuated by the treatment with 1% broccoli sprout extract. Pretreatment of 1% broccoli sprout extract prevented the ROS generation in HUVECs evoked by AGEs. The present study demonstrates that sulforaphane-rich broccoli sprout extract could inhibit the AGE-RAGE axis and exhibit anti-inflammatory actions in HUVECs. Supplementation of sulforaphane-rich broccoli sprout extract may play a protective role against vascular injury.


2007 ◽  
Vol 73 (12) ◽  
pp. 4020-4028 ◽  
Author(s):  
Hanna Dams-Kozlowska ◽  
David L. Kaplan

ABSTRACT Acinetobacter venetianus Rag1 produces an extracellular, polymeric lipoheteropolysaccharide termed apoemulsan. This polymer is putatively produced via a Wzy-dependent pathway. According to this model, the length of the polymer is regulated by polysaccharide-copolymerase (PCP) protein. A highly conserved proline and glycine motif was identified in all members of the PCP family of proteins and is involved in regulation of polymer chain length. In order to control the structure of apoemulsan, defined point mutations in the proline-glycine-rich region of the apoemulsan PCP protein (Wzc) were introduced. Modified wzc variants were introduced into the Rag1 genome via homologous recombination. Stable chromosomal mutants were confirmed by Southern blot analysis. The molecular weight of the polymer was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Five of the eight point mutants produced polymers having molecular weights higher than the molecular weight of the polymer produced by the wild type. Moreover, four of these five polymers had modified biological properties. Replacement of arginine by leucine (R418L) resulted in the most significant change in the molecular weight of the polymer. The R418L mutant was the most hydrophilic mutant, exhibiting decreased adherence to polystyrene, and inhibited biofilm formation. The results described in this report show the functional effect of Wzc modification on the molecular weight of a high-molecular-weight polysaccharide. Moreover, in the present study we developed a genetic system to control polymerization of apoemulsan. The use of selective exogenous fatty acid feeding strategies, as well as genetic manipulation of sugar backbone chain length, is a promising new approach for bioengineering emulsan analogs.


2015 ◽  
Vol 59 (3) ◽  
pp. 424-433 ◽  
Author(s):  
Lauren L. Atwell ◽  
Anna Hsu ◽  
Carmen P. Wong ◽  
Jan F. Stevens ◽  
Deborah Bella ◽  
...  

2020 ◽  
Vol 12 (12) ◽  
pp. 4840 ◽  
Author(s):  
Spyros Grigorakis ◽  
Abedalghani Halahlah ◽  
Dimitris P. Makris

Salvia fruticosa Miller, also known as Cretan or Greek sage, is a medicinal plant with significant biological properties, which are largely ascribed to its polyphenolic composition, but there is to-date a scarcity of green and sustainable processes for efficient polyphenol extraction from this plant. The objective of this study was the implementation of an extraction process that would combine a green solvent based on glycerol, a biodiesel industry by-product, and ultrasonication pretreatment. Ultrasonication for 40 min followed by stirred-tank extraction was shown to provide significantly higher total polyphenol yield than mere stirred-tank extraction, while kinetics indicated 50 °C as the most favorable temperature, with the yield being 92 mg gallic acid equivalents (GAE) per g dry mass. Comparison of this method with a previously developed one that used methyl β-cyclodextrin revealed that the extracts obtained had similar antioxidant activity, and yield in major polyphenols including luteolin 7-O-glucuronide and rosmarinic acid was virtually equal. The current process is proposed as a sustainable and effective methodology for the generation of polyphenol-enriched extracts from S. fruticosa, which could be used as effective food antioxidants/antimicrobials and/or cosmetic constituents.


Sign in / Sign up

Export Citation Format

Share Document