scholarly journals Determination of Multiple Mycotoxins and Their Natural Occurrence in Edible Vegetable Oils Using Liquid Chromatography–Tandem Mass Spectrometry

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2795
Author(s):  
Thammaporn Junsai ◽  
Saranya Poapolathep ◽  
Samak Sutjarit ◽  
Mario Giorgi ◽  
Zhaowei Zhang ◽  
...  

The prevalence of mycotoxins is often increased by the climatic conditions prevailing in tropical regions. Reports have revealed the contamination of mycotoxins in some types of vegetable oil. However, vegetable oil is one of the essential ingredients used in food preparation. Thus, this study determined the occurrence of multi-mycotoxins in six types of vegetable oils commercially available in Thailand to assess the consumer health risk. In total, 300 vegetable oil samples (olive oil, palm oil, soybean oil, corn oil, sunflower oil, and rice bran oil) collected from various markets in Thailand were analyzed for the presence of nine mycotoxins, namely, aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), beauvericin (BEA), ochratoxin A (OTA), zearalenone (ZEA), fumonisin B1 (FB1), and fumonisin B2 (FB2) using a quick, easy, cheap, effective, rugged, and safe (QuEChERS)-based procedure and a triple quadrupole mass spectrometer equipped with an electrospray ionization source. The incidences of mycotoxin contamination varied among the different types of oil samples. AFB1, AFB2, ZEA, FB1, and FB2 were most frequently found in contaminated samples. AFB2, BEA, ZEA, FB1, and FB2 contaminated olive oil samples, whereas AFB1, AFB2, AFG2, and OTA contaminated palm oil samples. AFB1, AFB2, and ZEA were found in soybean oils, whereas ZEA, FB1, and FB2 contaminated corn oil samples. AFB1 and AFG1 contaminated sunflower oil samples, whereas AFB1, AFB2, AFG1, and OTA were detected in rice bran oil samples. However, the contamination levels of the analyzed mycotoxins were below the regulatory limits.

2015 ◽  
Vol 830-831 ◽  
pp. 160-163 ◽  
Author(s):  
K.M. Pranesh Rao ◽  
K. Narayan Prabhu

Quench hardening is a process where an alloy is heated to solutionizing temperature and held for a definite period, and then rapidly cooled in a quenching medium. Selection of quenchant that can yield desired properties is essential as it governs heat extraction process during quenching. In the present work, the cooling performance of vegetable oil and mineral-vegetable oil blend quench media was assessed. The vegetable oils used in this work were olive oil, canola oil and rice bran oil. The mineral-vegetable oil blends were prepared by blending 10 and 20 vol. % of rice bran and canola oil in mineral oil. Inconel probe of 12.5mm diameter and 60mm height, instrumented with thermocouples were used to characterize quenchants. The probe was heated to 850°C and quenched in the oil medium. The cooling curves at different locations in the probe were used to study wetting kinematics. Inverse modelling technique was used to estimate spatially dependent metal-quenchant interfacial heat flux. It was found that the vegetable oils exhibited very short vapour blanket stage compared to mineral oil and blends. Faster wetting kinematics obtained with blends resulted in uniform heat transfer compared to that of mineral oil. The temperature distribution in the probe quenched in vegetable oils and blends was more uniform compared to that in mineral oil. It is expected that the parts quenched in vegetable oils and blends would lead to better hardness distribution compared to mineral oils.


Author(s):  
Amarlo Banania ◽  
Edwin N. Quiros ◽  
Jose Gabriel E. Mercado

Abstract Continuous demand for energy in order to provide to an ever-increasing global population calls for use of or integration of other alternative sources of fuel other than fossil fuels. Many countries all over the world use vegetable oils blended with neat diesel as alternative and using these biofuels can help alleviate lessen the emissions releases on the environment as well as the country’s dependency on fossil fuels. In the Philippines Coconut Methyl Ester (CME) is the primary vegetable oil used, however in this study we used four other vegetable oils which are RCO (Refined Corn Oil), RPO (Refine Palm Oil), JFO (Jahtropa Filtered Oil) and JME (Jathropa Methyl Ester) in order to investigate the possibility of their use in diesel engines. A 6.3 kW single-cylinder, four stroke cycle, direct injection engine was used for the study. This kind of engine is typically used in the Philippines for different purposes such as backup power for households, for boats, pumps and for agriculture use. The specific fuel consumption of the biodiesel blends compared to neat diesel fuel ranged from −15% to 15% with RCO and JME having higher SFC and JFO and RPO having lower SFC. Fuel conversion efficiency of the varied from −12% to 12% with JFO and RPO having higher efficiency and RCO and JME having lower efficiency. The power of the varied from −7% to 6% with RPO having lower power output, JFO having higher power output and JME and RCO having similar power output to neat diesel fuel. At full load condasition Neat Diesel Fuel blended with 15% Refined Palm Oil showed the greatest improvement in SFC while Neat Diesel Fuel blended with 10% Jathropa Filtered Oil showed the best power output.


2020 ◽  
Vol 24 (2 Part A) ◽  
pp. 713-722
Author(s):  
Maran Punnaivanam ◽  
Arumugam Krishnan

In the present work, straight sunflower oil and rice bran oil blended with diesel have been used as fuel diesel in a mini boiler. The thermal efficiency of the boiler and emission levels in the exhaust gases have been investigated by burning the oil blends of varying proportions ranging from 0-50%. An additional air supply system and compressed air atomization of fuel with a new burner have been used to improve the thermal efficiency of the mini boiler. Results revealed that the addi?tional air supply improved the thermal efficiency up-to 7% and reduced the CO and HC emission up-to 40%. The use of compressed air atomization further increased the thermal efficiency up-to 4% and reduced the CO and HC emission up-to 70%.


Foods ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 334 ◽  
Author(s):  
Ruinan Yang ◽  
Li Xue ◽  
Liangxiao Zhang ◽  
Xuefang Wang ◽  
Xin Qi ◽  
...  

Phytosterols are important micronutrients in human diets. Evidence has shown that phytosterols play an essential role in the reduction of cholesterol in blood and therefore decrease cardiovascular morbidity. In this study, the content and composition of phytosterols in different kinds of vegetable oils were analyzed, and the total phytosterol intake and contribution of foods to intake were estimated based on consumption data. The results showed that the phytosterol contents of rice bran oil, corn oil, and rapeseed oil were higher than those of other vegetable oils and the intake of phytosterol in the Chinese diet was about 392.3 mg/day. The main sources of phytosterols were edible vegetable oils (46.3%), followed by cereals (38.9%), vegetables (9.2%), nuts (2.0%), fruits (1.5%), beans and bean products (1.4%), and tubers (0.8%). Among all vegetable oils, rapeseed oil was the main individual contributor to phytosterol intake (22.9%), especially for the southern residents of China.


2013 ◽  
Vol 781-784 ◽  
pp. 1806-1810
Author(s):  
Hong Xia Li ◽  
Min Zhi ◽  
Xin Lu ◽  
Jun Jie Zhang ◽  
Mei Ting Li

Since rice bran oil (RBO) is well-known by consumer and more expensive than other oils, some RBO is adulterated with other cheap oils, such as cottonseed oil (CO), palm oil (PO), sunflower oil (SFO) and soybean oil (SO). The types and content of FAs in RBO changes great after adulterated, this will seriously affect the quality of the rice and the people health. In this study, GC was used to detect the change of fatty acids (FAs) after adulterated with those inferior oils. The analysis will provide a reference for the RBO adulteration problem.


2018 ◽  
Vol 192 ◽  
pp. 03042
Author(s):  
Gitsada Panumonwatee ◽  
Ampira Charoensaeng ◽  
Noulkamol Arpornpong

An accurate determination of the hydrophilic-lipophilic nature of surfactants plays an important role in guiding microemulsion formation. The objective of this study is to determine the effect of ethoxylate numbers (EONs) (3, 5, and 7 moles) of nonionic surfactants on a phase inversion temperature (PIT) and optimum salinity based on the equivalent alkane carbon numbers (ACNs) of vegetable oils. Three vegetable oils, soybean oil, crude rice bran oil and crude palm oil, were selected for use as a surrogate oil to represent the residual oils found in spent bleaching earth. In this study, the hydrophilic-lipophilic deviation (HLD) was used to predict the optimum salinity (0-20 %wt.) at various temperatures (25-55°C). The results showed that the ACNs of crude rice bran oil, crude palm oil, and soybean oil were 15.41±0.35, 13.71±0.41, and 17.60±0.28, respectively. In comparison, these predictions with the experimental results, the data showed slight deviations in the optimum salinity with the specific temperature. Finally, the ACN and the surfactant characteristics obtained in this study were combined with the HLD equation and used to validate its practically and utility for guiding the optimum microemulsion formulation.


2015 ◽  
Vol 6 (2) ◽  
pp. 284-287
Author(s):  
Ignacio Carreño ◽  
Paolo Vergano

This report addresses the legal concept of “self-evident” and “flagrantly misleading” advertising established in Article 7(1)(c) of Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers (hereinafter, the Food Information Regulation, FIR). Since 13 December 2014 (since the specific origin of vegetable oils must be declared), “palm oil-free” claims on, e.g., a product containing sunflower oil or any other vegetable oil (and mandatorily indicating it in the list of ingredients) are arguably obvious, unnecessary and irrelevant (and in legal terms “selfevident” and “flagrantlymisleading”). Compared to similar foods that possess the same characteristics, but do not claim to be “palm oil-free”, these products are in no way “special”.


2008 ◽  
Vol 12 (2) ◽  
pp. 159-169 ◽  
Author(s):  
Janahiraman Krishnakumar ◽  
Karuppannan Venkatachalapathy ◽  
Sellappan Elancheliyan

Biodiesel, a promising substitute as an alternative fuel has gained significant attention due to the finite nature of fossil energy sources and does not produce sulfur oxides and minimize the soot particulate in comparison with the existing one from petroleum diesel. The utilization of liquid fuels such as biodiesel produced from vegetable oil by transesterification process represents one of the most promising options for the use of conventional fossil fuels. In the first step of this experimental research, edible rice bran oil used as test material and converted into methyl ester and non-edible jatropha vegetable oil is converted into jatropha oil methyl ester, which are known as biodiesel and they are prepared in the presence of homogeneous acid catalyst and optimized their operating parameters like reaction temperature, quantity of alcohol and the catalyst requirement, stirring rate and time of esterification. In the second step, the physical properties such as density, flash point, kinematic viscosity, cloud point, and pour point were found out for the above vegetable oils and their methyl esters. The same characteristics study was also carried out for the diesel fuel for obtaining the baseline data for analysis. The values obtained from the rice bran oil methyl ester and jatropha oil methyl ester are closely matched with the values of conventional diesel and it can be used in the existing diesel engine without any hardware modification. In the third step the storage characteristics of biodiesel are also studied. .


2021 ◽  
Vol 29 (1) ◽  
pp. 21-34
Author(s):  
Hasrul Abdi Hasibuan ◽  
Adi Priyanto

Minyak sawit merah murni (virgin red palm oil, VRPO) merupakan minyak mengandung asam lemak jenuh dan tak jenuh seimbang, serta senyawa bioaktif tinggi (seperti karoten, tokoferol dan tokotrienol). Sementara itu, minyak zaitun (olive oil, OO), minyak jagung (corn oil, CO), minyak kedelai (soybean oil, SBO) dan minyak bunga matahari (sunflower oil, SFO) merupakan minyak mengandung asam lemak tak jenuh tinggi. Pencampuran dua atau lebih jenis minyak dapat menghasilkan minyak sehat dengan profil asam lemak, stabilitas oksidatif dan senyawa bioaktif yang diinginkan. Penelitian ini dilakukan untuk mengkaji karakteristik campuran VRPO dengan OO, CO, SBO atau SFO pada rasio berat 100:0-0:100 meliputi kadar asam lemak bebas, karoten dan vitamin E, komposisi asam lemak, bilangan iodin, titik leleh, dan kandungan lemak padat. Peningkatan jumlah VRPO meningkatkan kadar asam palmitat, karoten dan vitamin e, titik leleh dan kandungan lemak padat. Peningkatan jumlah OO, CO, SBO atau SFO menurunkan kadar asam lemak bebas dan meningkatkan bilangan iodin. Campuran VRPO dengan CO, SBO atau SFO menghasilkan minyak sehat dengan rasio asam lemak jenuh: asam lemak tak jenuh tunggal: asam lemak tak jenuh ganda mendekati 1:1,5:1,0. Campuran VRPO dengan OO juga menghasilkan minyak sehat dengan rasio asam linoleat: asam linolenat sebesar 5-10:1. Campuran-campuran minyak tersebut dapat digunakan sebagai bahan baku untuk minyak goreng, baking shortening dan margarin yang kaya senyawa bioaktif.


Sign in / Sign up

Export Citation Format

Share Document