scholarly journals Mechanisms of Change in Emulsifying Capacity Induced by Protein Denaturation and Aggregation in Quick-Frozen Pork Patties with Different Fat Levels and Freeze–Thaw Cycles

Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 44
Author(s):  
Nan Pan ◽  
Wei Wan ◽  
Xin Du ◽  
Baohua Kong ◽  
Qian Liu ◽  
...  

Herein, we discuss changes in the emulsifying properties of myofibrillar protein (MP) because of protein denaturation and aggregation from quick-frozen pork patties with multiple fat levels and freeze–thaw (F–T) cycles. Protein denaturation and aggregation were confirmed by the significantly increased surface hydrophobicity, turbidity, and particle size, as well as the significantly decreased solubility and absolute zeta potential, of MPs with increases in fat levels and F–T cycles (p < 0.05). After multiple F–T cycles, the emulsifying activity and emulsion stability indices of all samples were significantly reduced (p < 0.05). The emulsion droplets of MP increased in size, and their distributions were dense and irregular. The results demonstrated that protein denaturation and aggregation due to multiple F–T cycles and fat levels changed the distribution of surface chemical groups and particle sizes of protein, thus affecting the emulsifying properties.

Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1819
Author(s):  
Hu Zhuang ◽  
Shang Chu ◽  
Ping Wang ◽  
Bin Zhou ◽  
Lingyu Han ◽  
...  

Pomegranate peel pectin is an important acidic anionic plant polysaccharide which can be used as a natural emulsifier. In order to study its emulsifying properties, this paper systematically analyses pomegranate peel pectin samples from Chinese Xinjiang, Sichuan and Yunnan provinces, through rheometer, interfacial rheometer, Zetasizer Nano-ZS and mastersizer. It is shown that pomegranate peel pectin can effectively reduce the oil-water interfacial tension, reaching an emulsion droplet size of only 0.507 μm, 0.669 μm and 0.569 μm, respectively, while the pectin concentration is 1.5% and the oil phase (MCT) is 10%. It has also shown that the extreme conditions of pH and ion strength can not significantly change its emulsion stability. However, freeze-thaw cycles can cause the pomegranate peel pectin emulsion to become less stable. Furthermore, the effects of decolourization, protein removal and dialysis on the emulsifying properties of pomegranate peel pectin are investigated using mastersizer rheometer and interfacial rheometer. It is found that the protein and pigment in pomegranate peel pectin have little effect on its emulsifying properties, while the results from dialyzed pectin show that the small molecule substances can reduce the emulsion particle size and increase the emulsion stability. The research outcomes of this study provide technical support for the further application of pomegranate peel pectin in the food industry.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Li-Hui Sun ◽  
Feng Yu ◽  
Yu-Ying Wang ◽  
Shi-Wen Lv ◽  
Lei-Yu He

Abstract In this study, rice bran protein was prepared by ultrasound-assisted extraction, and its physicochemical and emulsifying properties were also evaluated. Results demonstrated that a significant increase in protein yield was observed when ultrasound-assisted method was employed for extracting protein. Noticeably, obtained rice bran protein possessed excellent physicochemical properties, such as oil absorption capacity, protein solubility and foaming property. More hydrophobic groups were exposed in the process of ultrasound-assisted extraction, which led to the increase of surface hydrophobicity. More importantly, the ultrasound-assisted extraction could improve emulsifying properties of rice bran protein, and the emulsions prepared using protein samples exhibited the great stability. Besides, it was also found that emulsifying properties of protein samples presented a decrease trend with increasing ultrasound power and time. All in all, ultrasound-assisted extraction is a suitable alternative process for preparing rice bran protein.


Water ◽  
2018 ◽  
Vol 10 (5) ◽  
pp. 536 ◽  
Author(s):  
Huijun Feng ◽  
Junfeng Chen ◽  
Xiuqing Zheng ◽  
Jing Xue ◽  
Chunyan Miao ◽  
...  

2012 ◽  
Vol 36 (5) ◽  
pp. 543-550 ◽  
Author(s):  
Clitor Junior Fernandes de Souza ◽  
Edwin Elard Garcia Rojas

This work characterizes the emulsifying properties of systems containing egg yolk (0.1; 1.0 and 2.5 % w/v) and polysaccharides (xanthan gum, carrageen, pectin and carboxymethylcellulose) and three different vegetable oils (sunflower, canola, and palm oils). Emulsifying activity and emulsion stability were measured of each combination and it was found the effect of the oil on emulsion stability correlated to the amount of monounsaturated fatty acid. Additionally, increased egg yolk concentration increased emulsifying activity by reducing coalescence of oil droplets. Lastly, 2.5% egg yolk and 0.2% polysaccharide generated emulsions with high emulsifying activity, excellent stability, and droplet size of 4.32 µm.


Author(s):  
Noelia Betoret ◽  
Laura Calabuig-Jiménez ◽  
Cristina Barrera ◽  
Lucia Seguí

Producing dried powders from blueberry pomace allows to reduce its environmental impact and gives value to this waste material. This work aims to evaluate the effect of particle size (fine or coarse) of blueberry pomace dried at 70 ºC on its fibre content and main physicochemical properties, including antiradical capacity, total phenols and anthocyanins content, hydration and emulsifying properties. The effect of storage on antioxidant properties was also evaluated. Results showed a significant effect of particle size on fibre content and consequently, on water retention, holding and emulsifying capacity of the powder. Neither phenols nor anthocyanins were affected by particle size or storage time. Keywords: blueberry pomace, powders, fibre, antioxidant properties.


2016 ◽  
Vol 33 (No. 5) ◽  
pp. 474-479 ◽  
Author(s):  
J. Ren ◽  
Ch. Song ◽  
P. Wang ◽  
S. Li ◽  
N. Kopparapu ◽  
...  

The structural and functional properties such as solubility, emulsifying properties, foaming properties, oil binding capacity, and surface hydrophobicity of sunflower 11S globulin hydrolysates generated by Alcalase at hydrolysis time of 30, 60, 90, and 120 min were evaluated. Circular dichroism analysis showed the hydrolysates possessed a decreased α-helix and β-structure. The hydrolysates exhibited lower surface hydrophobicity. Hydrolysates with shorter hydrolysis time showed the higher emulsifying activity index, but the same emulsion stability and oil binding capacity compared to the original 11S globulin. The longer hydrolysis resulted in lower foaming and emulsion stability. Thus it was demonstrated that by controlling the hydrolysis time of sunflower 11S globulin, hydrolysate with a desirable functional properties can be obtained.


Sign in / Sign up

Export Citation Format

Share Document