scholarly journals Comparative Transcriptomic Analysis Reveals Diverse Expression Pattern Underlying Fatty Acid Composition among Different Beef Cuts

Foods ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 117
Author(s):  
Tianliu Zhang ◽  
Qunhao Niu ◽  
Tianzhen Wang ◽  
Xu Zheng ◽  
Haipeng Li ◽  
...  

Beef is an important dietary source of quality animal proteins and amino acids in human nutrition. The fatty acid composition is one of the indispensable indicators affecting nutritional value of beef. However, a comprehensive understanding of the expression changes underlying fatty acid composition in representative beef cuts is needed in cattle. This study aimed to characterize the dynamics of fatty acid composition using comparative transcriptomic analysis in five different type of beef cuts. We identified 7545 differentially expressed genes (DEGs) among 10 pair-wise comparisons. Co-expression gene network analysis identified two modules, which were significantly correlated with 2 and 20 fatty acid composition, respectively. We also identified 38 candidate genes, and functional enrichment showed that these genes were involved in fatty acid biosynthetic process and degradation, PPAR, and AMPK signaling pathway. Moreover, we observed a cluster of DEGs (e.g., SCD, LPL, FABP3, and PPARD) which were involved in the regulation of lipid metabolism and adipocyte differentiation. Our results provide some valuable insights into understanding the transcriptome regulation of candidate genes on fatty acid composition of beef cuts, and our findings may facilitate the designs of genetic selection program for beneficial fatty acid composition in beef cattle.

2019 ◽  
Vol 64 (No. 4) ◽  
pp. 180-188
Author(s):  
Sangwook Kim ◽  
Byeonghwi Lim ◽  
Kwansuk Kim ◽  
Kyoungtag Do

Intramuscular fat (IMF) and fatty acid composition are characteristics that are used as important indicators of evaluating high quality pork and contribute to the economic benefits of the pig farming industry. In this study, quantitative trait loci (QTL) fine mapping of chromosome 12 was performed in a population of F2 intercross between Yorkshire (YS) and Korean native pigs (KNPs) by adopting combined linkage and linkage disequilibrium method using high-density SNP chips. QTLs for IMF (H3GA0034813 to H3GA0034965) and oleic acid (C18:1) (ASGA0054380 to ALGA0066299) were located at 120 cM (54.112–57.610 kb) and 85 cM (36.097–38.601 kb), respectively, within chromosome 12 (Sscrofa11.1 genomic reference). In addition, 31 candidate genes present within the IMF QTL region and 28 candidate genes existing within C18:1 QTL region were chosen. In order to understand the function of these candidate genes at the molecular level, these candidate genes were functionally categorized by studying gene ontology and analyzing network and pathway. Among the 59 candidate genes within the region of IMF QTL and C18:1 QTL, five (MYH1, MYH2, MYH4, ACACA, and RPS6KB1) directly interacting candidate genes were found. Furthermore, the RPS6KB1 gene was assumed to be an important candidate gene that is involved in leptin and insulin signaling pathway and participates in controlling adipogenic differentiation, fat deposition, and fatty acid composition, which is related to obesity of pigs.  


Meat Science ◽  
2019 ◽  
Vol 156 ◽  
pp. 75-84 ◽  
Author(s):  
Martina Zappaterra ◽  
Diana Luise ◽  
Paolo Zambonelli ◽  
Marcello Mele ◽  
Andrea Serra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document