scholarly journals A Tara Gum/Olive Mill Wastewaters Phytochemicals Conjugate as a New Ingredient for the Formulation of an Antioxidant-Enriched Pudding

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 158
Author(s):  
Umile Gianfranco Spizzirri ◽  
Paolino Caputo ◽  
Cesare Oliviero Rossi ◽  
Pasquale Crupi ◽  
Marilena Muraglia ◽  
...  

Olive mill wastewater, a high polyphenols agro-food by-product, was successfully exploited in an eco-friendly radical process to synthesize an antioxidant macromolecule, usefully engaged as a functional ingredient to prepare functional puddings. The chemical composition of lyophilized olive mill wastewaters (LOMW) was investigated by HPLC-MS/MS and 1H-NMR analyses, while antioxidant profile was in vitro evaluated by colorimetric assays. Oleuropein aglycone (5.8 μg mL−1) appeared as the main compound, although relevant amounts of an isomer of the 3-hydroxytyrosol glucoside (4.3 μg mL−1) and quinic acid (4.1 μg mL−1) were also detected. LOMW was able to greatly inhibit ABTS radical (IC50 equal to 0.019 mg mL−1), displaying, in the aqueous medium, an increase in its scavenger properties by almost one order of magnitude compared to the organic one. LOMW reactive species and tara gum chains were involved in an eco-friendly grafting reaction to synthesize a polymeric conjugate that was characterized by spectroscopic, calorimetric and toxicity studies. In vitro acute oral toxicity was tested against 3T3 fibroblasts and Caco-2 cells, confirming that the polymers do not have any effect on cell viability at the dietary use concentrations. Antioxidant properties of the polymeric conjugate were also evaluated, suggesting its employment as a thickening agent, in the preparation of pear puree-based pudding. High performance of consistency and relevant antioxidants features over time (28 days) were detected in the milk-based foodstuff, in comparison with its non-functional counterparts, confirming LOWM as an attractive source to achieve high performing functional foods.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1912
Author(s):  
Marianna Araújo Ferreira ◽  
Renato Ferreira de Almeida Júnior ◽  
Thiago Souza Onofre ◽  
Bruna Renata Casadei ◽  
Kleber Juvenal Silva Farias ◽  
...  

Annatto (Bixa orellana L.) is extensively used as food pigment worldwide. Recently, several studies have found it to have healing and antioxidant properties, as well as effective action against leishmaniasis. Therefore, the purpose of this study was to incorporate the oil obtained from annatto seeds into a nanostructured lipid carrier (NLC) and evaluate its physicochemical properties and biological activity against Leishmania major. Nanoparticles were prepared by the fusion-emulsification and ultrasonication method, with the components Synperonic™ PE (PL) as the surfactant, cetyl palmitate (CP) or myristyl myristate (MM) as solid lipids, annatto oil (AO) (2% and 4%, w/w) as liquid lipid and active ingredient, and ultra-pure water. Physicochemical and biological characterizations were carried out to describe the NLCs, including particle size, polydispersity index (PDI), and zeta potential (ZP) by dynamic light scattering (DLS), encapsulation efficiency (EE%), thermal behavior, X-ray diffraction (XRD), transmission electron microscopy (TEM), Electron Paramagnetic Resonance (EPR), cytotoxicity on BALB/c 3T3 fibroblasts and immortalized human keratinocyte cells, and anti-leishmaniasis activity in vitro. Nanoparticles presented an average diameter of ~200 nm (confirmed by TEM results), a PDI of less than 0.30, ZP between −12.6 and −31.2 mV, and more than 50% of AO encapsulated in NLCs. Thermal analyses demonstrated that the systems were stable at high temperatures with a decrease in crystalline structure due to the presence of AOs (confirmed by XRD). In vitro, the anti-leishmania test displayed good activity in encapsulating AO against L. major. The results indicate that the oily fraction of Bixa orellana L. in NLC systems should be evaluated as a potential therapeutic agent against leishmaniasis.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 505
Author(s):  
Valentina Amodeo ◽  
Mariangela Marrelli ◽  
Veronica Pontieri ◽  
Roberta Cassano ◽  
Sonia Trombino ◽  
...  

Spontaneous edible plants have an old history of use in popular traditions all around the world, and the rediscovery of these species could also be useful for the search of new drugs. Chenopodium album L. (Amaranthaceae) and Sisymbrium officinale (L.) Scop. (Brassicaceae) are two annual plants traditionally used both as food and herbal remedies against inflammatory disorders. In this work, the potential anti-inflammatory and anti-arthritic activities of these plant species have been investigated, together with their antioxidant potential. The phytochemical composition was assessed as well by means of gas chromatography coupled to mass spectrometry (GC-MS) and high performance thin layer chromatography (HPTLC). The antioxidant properties were assessed using the DPPH and β-carotene bleaching test. The ability of extracts to protect against lipid peroxidation was also examined in rat-liver microsomal membranes. All the samples showed a preservation of antioxidant activity up to 60 min. A significant inhibitory activity on the production of the pro-inflammatory mediator nitric oxide was induced in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells by the dichloromethane fraction of C. album extract, with an IC50 value equal to 81.7 ± 0.9 μg/mL. The same sample showed also a concentration-dependent anti-denaturation effect on heat-treated bovine serum albumin (IC50 = 975.6 ± 5.5 μg/mL), even if the best in vitro anti-arthritic activity was observed for the dichloromethane fraction of S. officinale extract, with an IC50 value of 680.9 ± 13.2 μg/mL.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 773-773
Author(s):  
Miguel Rebollo-Hernanz ◽  
Silvia Cañas ◽  
Yolanda Aguilera ◽  
Vanesa Benitez ◽  
Andrea Gila-Díaz ◽  
...  

Abstract Objectives To study the nutritional value of cocoa shell, analyzing the chemical composition and functional properties as antioxidant, hypoglycemic and hypocholesterolemic effects, as well as validate the safety of cocoa shell as a sustainable food ingredient. Methods Proximate composition was determined following the AOAC methods. Soluble and insoluble fractions of dietary fiber (DF) were determined using enzymatic-gravimetric and chemical methods. The phenolic profile was analyzed by UPLC-MS/MS and antioxidant properties were tested using ABTS. Furthermore, physicochemical, hypoglycemic, and hypocholesterolemic properties were assessed in vitro. Acute and subchronic oral toxicity experiments were performed following OECD Guidelines 452 and 408 (5 male and 5 female C57BL/6 mice per group, vehicle/cocoa shell) to assess the food safety of cocoa shell flours. Results Cocoa shell was composed of carbohydrates (62%), proteins (16%), and fat (2%). DF represents 59%, being the insoluble dietary fiber (IDF) the main fraction (82%). IDF fraction was constituted by lignin (58%) and polysaccharides (42%); cellulose was inferred as the main polysaccharide of IDF, followed by hemicelluloses (arabinans and galactans). High content of phenolic compounds (33.7 mg/g) was shown, being a significant phenolic fraction (51%) bound to DF, which confers cocoa shell its antioxidant potential (73.1 mg Trolox eq/g). The main phenolics were protocatechuic acid, (−)-epicatechin, and (+)-catechin. Cocoa shell exhibited adequate water and oil holding properties to be included in food matrices. During in vitro digestion, starch hydrolysis and dialyzed glucose diminished (34 and 13%, respectively) due to α-amylase inhibition (18%) and glucose adsorption (31%). Cocoa shell also inhibited cholesterol and bile salts absorption (72 and 70%, respectively). The intake of acute (2000 mg/kg) and subcronical (1000 mg/kg) doses of the ingredient did not cause significant lesions in selected isolated vital organs (liver, spleen, and kidney) nor changes in histological parameters, ensuring the safety of this sustainable food ingredient. Conclusions Results validate the use of cocoa shell as an antioxidant dietary fiber ingredient, being a safe potential candidate to be incorporated in the development of foods for specific health uses. Funding Sources Ministry of Science and Innovation.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 328 ◽  
Author(s):  
Renata Spagolla Napoleão Tavares ◽  
Camila Martins Kawakami ◽  
Karina de Castro Pereira ◽  
Gabriela Timotheo do Amaral ◽  
Carolina Gomes Benevenuto ◽  
...  

Fucoxanthin possesses a well-described antioxidant activity that might be useful for human skin photoprotection. However, there is a lack of scientific information regarding its properties when applied onto human skin. Thus, the objective of the present study was to assess the photoprotective and phototoxicity potential of fucoxanthin based on its ultraviolet (UVB 280–320 nm; UVA 320–400 nm) and visible (VIS 400–700 nm) absorption, photostability, phototoxicity in 3T3 mouse fibroblast culture vs. full-thickness reconstructed human skin (RHS), and its ability to inhibit reactive oxygen species formation that is induced by UVA on HaCaT keratinocytes. Later, we evaluated the antioxidant properties of the sunscreen formulation plus 0.5% fucoxanthin onto RHS to confirm its bioavailability and antioxidant potential through the skin layers. The compound was isolated from the alga Desmarestia anceps. Fucoxanthin, despite presenting chemical photo-instability (dose 6 J/cm2: 35% UVA and 21% VIS absorbance reduction), showed acceptable photodegradation (dose 27.5 J/cm2: 5.8% UVB and 12.5% UVA absorbance reduction) when it was added to a sunscreen at 0.5% (w/v). In addition, it increased by 72% of the total sunscreen UV absorption spectra, presenting UV-booster properties. Fucoxanthin presented phototoxic potential in 3T3 fibroblasts (mean photo effect 0.917), but it was non-phototoxic in the RHS model due to barrier function that was provided by the stratum corneum. In addition, it showed a significant inhibition of ROS formation at 0.01% (p < 0.001), in HaCat, and in a sunscreen at 0.5% (w/v) (p < 0.001), in RHS. In conclusion, in vitro results showed fucoxanthin protective potential to the skin that might contribute to improving the photoprotective potential of sunscreens in vivo.


2001 ◽  
Vol 8 (4) ◽  
pp. 706-710 ◽  
Author(s):  
Alfonso Ruiz-Bravo ◽  
Maria Jimenez-Valera ◽  
Encarnacion Moreno ◽  
Victor Guerra ◽  
Alberto Ramos-Cormenzana

ABSTRACT An extracellular polysaccharide was purified from culture supernatants of Paenibacillus jamilae CP-7, a gram-positive bacillus that was isolated from compost prepared with olive mill wastewaters. The extracellular polysaccharide was produced under aerobic conditions in a medium containing olive mill wastewaters (80% [vol/vol]). This exopolymer had a low level of acute toxicity when it is administered to BALB/c mice by the intraperitoneal route. Interesting immunomodulatory effects were detected when mice were given 10 mg of exopolysaccharide per kg of body weight; the proliferative responses of splenocytes to B-cell and T-cell mitogens were suppressed, the in vitro levels of production of gamma interferon and granulocyte-macrophage colony-stimulating factor by unstimulated and lipopolysaccharide-stimulated splenocytes were enhanced, and the levels of resistance to the intracellular pathogen Listeria monocytogenes was increased in mice. Also, the exopolysaccharide was able to induce lymphocyte proliferation in vitro. We conclude thatP. jamilae produces an exopolysaccharide with interesting immunomodulatory properties.


2017 ◽  
Vol 23 (4) ◽  
pp. 289-298 ◽  
Author(s):  
Géssica Alves Fraga ◽  
Sikiru Olaitan Balogun ◽  
Emilly Della Pascqua ◽  
Ruberlei Godinho de Oliveira ◽  
Guilherme Botelho ◽  
...  

Background: The constant pursuit of improved athletic performance characterizes high-performance sport and the use of medicinal plants as dietary supplements is becoming widespread among athletes to enhance long-term endurance performance. Aim: The present study evaluated the toxicity of Heteropterys tomentosa (HEHt) and its acute adaptogenic effects. Methods: The in vitro safety profile was evaluated on CHO-k1 cells using the alamar Blue assay, at concentrations ranging from 3.125 to 200 µg/mL. In vivo acute oral toxicity was conducted in male and female mice with oral administration of graded doses of HEHt from 400 to 2000 mg/kg. A subchronic oral toxicity study was completed by oral administration of HEHt (50, 200 or 1000 mg/kg) and vehicle for 30 days in male Wistar rats. Clinical observations and toxicological related parameters were determined. Blood was collected for biochemical and hematological analyses, while histological examinations were performed on selected organs. Thereafter, an adaptogenic test consisting of progressive loads until exhaustion was conducted in rats ( n = 5/group) orally pre-treated with the vehicle and HEHt (25, 100 or 400 mg/kg). Results: HEHt exhibited no cytotoxic effects on the CHO-k1 cells and, apparently, no acute toxicity in mice and no subchronic toxicity in rats. An ergogenic effect was observed only at the dose of 25 mg/kg compared with the vehicle in relation to time to exhaustion and exercise load ( p = .011 and .019, respectively). HEHt is safe at up to 400 mg/kg, contains astilbin and taxifolin as the major phytochemical compounds, and exhibited a potential adaptogenic effect. Conclusions: These results justify its anecdotal usage as a tonic, show that the hydroethanolic maceration of the root does not cause toxicity, and provide scientific evidence of its potential as a source of new adaptogenic substance(s).


2021 ◽  
Vol 15 (3) ◽  
pp. 175-194
Author(s):  
Boutaina Addoum ◽  
◽  
Bouchra El khalfi ◽  
Mohamed Idiken ◽  
Souraya Sakoui ◽  
...  

Background: Antioxidants are developed to assist the immune system and overcome oxidative stress, the aggression of cellular constituents due to imbalance between reactive oxygen species and the inner antioxidant system. The main objective of this study was to search for new and potent antioxidants to protect humans against diseases associated with oxidative stress. Methods: In this study, three pyrano-[2,3-c]-pyrazole derivatives were synthesized via Multicomponent Reaction (MCR) approach and were characterized, using a melting point, High-Performance Liquid Chromatography (HPLC), and spectroscopic analyses (IR; 1H-NMR; 13C-NMR). All of the generated compounds were screened for their antioxidant properties in vivo, using ciliate “Tetrahymena” as a model organism exposed to oxidative and nitrative stress. They were then studied in vitro by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays. Results: The results demonstrated that the three compounds (5a, b, c) are biologically active and possess potent antioxidant activities, especially the 5a and 5b derivatives. On the other hand, the in vitro bioassays revealed that the 5a derivative possessed a significant antioxidant activity much greater than ascorbic acid. Accordingly, the in silico data are consistent with the experimental data. Conclusion: These findings confirmed the potent antioxidant property of the synthesized compounds, providing us with new inspiration and challenges to design a library of pharmaceutical compounds with strong activity and low toxicity in the future.


2020 ◽  
Vol 145 (3) ◽  
pp. 193-202
Author(s):  
Yi Gong ◽  
Ronald B. Pegg ◽  
Adrian L. Kerrihard ◽  
Brad E. Lewis ◽  
Richard J. Heerema

Pecan (Carya illinoinensis) is a tree nut native to North America. Although inhibited light exposure (most specifically as a result of overlapping tree canopies) has been shown to impair yield, the effect of this factor on nut antioxidant properties remains unknown. This study investigated effects of mechanical pruning and canopy height position of fruit on pecan kernel antioxidant contents and capacity. Beginning in 2006, trees in a ‘Western’ pecan orchard in New Mexico were subjected to three mechanical pruning frequency treatments (annual, biennial, and triennial) paralleling conventional practices, while other trees were maintained as unpruned controls. During the 2012 to 2014 seasons, pecans were sampled at fruit maturity from three canopy height zones (“low,” “middle,” and “high,” corresponding to 1.5 to 3.0 m, 3.0 to 4.5 m, and 4.5 to 6.0 m above the orchard floor). In vitro phenolics contents and antioxidant capacities of the nutmeats were evaluated by total phenolics content (TPC) and oxygen radical absorbance capacity (H-ORACFL), respectively. Soluble ester- and glycoside-bound phenolics were quantified by reversed-phase high-performance liquid chromatography (HPLC). For both TPC and H-ORACFL, results determined pruned samples had significantly higher values than unpruned samples (P < 0.001 for both comparisons), and that samples of “high” canopy height were significantly greater than those of “middle” height, which were in turn greater than those of “low” height (P < 0.001 for all comparisons). HPLC findings showed that in all three phenolic fractions (free, esterified, and glycoside-bound phenolics), nuts acquired from pruned trees had substantially greater concentrations of ellagic acid and its derivatives. Our findings indicate mechanical pruning of pecan trees and higher tree canopy position of fruit increase nut antioxidant properties.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1121 ◽  
Author(s):  
Giuseppe Di Pede ◽  
Letizia Bresciani ◽  
Luca Calani ◽  
Giovanna Petrangolini ◽  
Antonella Riva ◽  
...  

Quercetin is one of the main dietary flavonols, but its beneficial properties in disease prevention may be limited due to its scarce bioavailability. For this purpose, delivery systems have been designed to enhance both stability and bioavailability of bioactive compounds. This study aimed at investigating the human microbial metabolism of quercetin derived from unformulated and phytosome-formulated quercetin through an in vitro model. Both ingredients were firstly characterized for their profile in native (poly)phenols, and then fermented with human fecal microbiota for 24 h. Quantification of microbial metabolites was performed by ultra-high performance liquid chromatography coupled to mass spectrometry (uHPLC-MSn) analyses. Native quercetin, the main compound in both products, appeared less prone to microbial degradation in the phytosome-formulated version compared to the unformulated one during fecal incubation. Quercetin of both products was bioaccessible to colonic microbiota, resulting in the production of phenylpropanoic acid, phenylacetic acid and benzoic acid derivatives. The extent of the microbial metabolism of quercetin was higher in the unformulated ingredient, in a time-dependent manner. This study opened new perspectives to investigate the role of delivery systems on influencing the microbial metabolism of flavonols in the colonic environment, a pivotal step in the presumed bioactivity associated to their intake.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2440 ◽  
Author(s):  
Yang Liu ◽  
Pei Chen ◽  
Mingming Zhou ◽  
Tongli Wang ◽  
Shengzuo Fang ◽  
...  

Cyclocarya paliurus has been widely used as an ingredient in functional foods in China. However, the antioxidant properties of phenolic compounds and the effect of the plant origin remain unclear. The present study evaluated the geographical variation of this plant in term of its phenolic composition and antioxidant activities based on leaf materials collected from five regions. high-performance liquid chromatography (HPLC) analysis showed that there are three major components, quercetin-3-O-glucuronide, kaempferol-3-O-glucuronide, and kaempferol-3-O-rhamnoside, and their contents varied significantly among sampling locations. The investigated phenolic compounds showed substantial antioxidant activities, both in vitro and in vivo, with the highest capacity observed from Wufeng and Jinzhongshan. Correlation analysis revealed that quercetin and kaempferol glycosides might be responsible for the antioxidant activities. Our results indicate the importance of geographic origin, with sunny hours and temperature as the main drivers affecting the accumulation of C. paliurus phenolics and their antioxidant properties.


Sign in / Sign up

Export Citation Format

Share Document