scholarly journals Design of Saline Gel Coil for Inner Heating of Electrolyte Solution and Liquid Foods under Induced Electric Field

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 213
Author(s):  
Lingtao Zhang ◽  
Fan Liu ◽  
Ting Wang ◽  
Shilin Wu ◽  
Yamei Jin ◽  
...  

As an emerging electrotechnology, induced electric field has attracted extensive attention in the development of innovative heat treatment equipment. In this study, a resistance heating unit based on induced electric field was built for inner heating of aqueous electrolyte solutions as well as liquid foods, such as vinegar. NaCl solutions and liquid foods with different conductivity were used to investigate the thermal effect and temperature rise of samples. Saline gel composed of 3% agar powder and 20% NaCl acted as a coil of conductor for inducing high-level output voltage. The utilization of the saline gel coil significantly improved the power conversion efficiency of the heating unit as well as the heating rate. The results revealed that duty cycle and applied frequency had immediate impact on the efficiency of inner heating. Additionally, the rate of temperature rise was proportional to the conductivity of the sample. The temperature of 200 mL NaCl solution (0.6%) increased from 25 °C to 100 °C in 3 min at 40% duty cycle and 60 kHz of applied frequency, and it was a circulating-flow process. The maximum temperature rise of black vinegar was 39.6 °C in 15 s at 60 kHz and 60% duty cycle, while that of white vinegar was 32.2 °C in 30 s under same conditions, whereas it was a continuous-flow process. This novel heating system has realized the inner heating of liquid samples.

2020 ◽  
Vol 10 (12) ◽  
pp. 4071
Author(s):  
Khanit Matra ◽  
Pattakorn Buppan ◽  
Boonchai Techaumnat

The paper investigated studies on the application of pulsed electric fields for the treatment of liquid media in a continuous manner in a co-field treatment chamber with elliptic insulator profiles. The electric field distribution and the temperature rise in the treatment chamber were evaluated via the finite element method. A non-uniform electric field was found at the elliptical insulator edges, while the electric field distribution on the insulator surface was rather uniform. The maximum temperature rise in the liquid media was located slightly behind the elliptic insulator due to the accumulated heat in the flowing liquid media. In the optimized treatment chamber, the average electric field intensity could be as high as 12.21 kV/cm at the moderate voltage at 7.5 kV. As a strategy to improve the inactivation while limiting the temperature rise, a series of treatment chambers was verified by experiments under the conditions of 7.5 kV, a 2.5% duty cycle, and 250 Hz. It was found that an increase in the treatment units could increase the inactivation efficiency for Escherichia coli. The average log reduction could be improved from 1.82 to 2.39 when the number of treatment units was increased from 1 to 5, respectively.


Author(s):  
Thierry A Blanchet

As in various manufacturing processes, in sliding tests with scanning motions to extend the sliding distance over fresh countersurface, temperature rise during any pass is bolstered by heating during prior passes over neighboring tracks, providing a “heat accumulation effect” with persisting temperature rises contributing to an overall temperature rise of the current pass. Conduction modeling is developed for surface temperature rise as a function of numerous inputs: power and size of heat source; speed and stroke length, and track increment of scanning motion; and countersurface thermal properties. Analysis focused on mid-stroke location for passes of a square uniform heat flux sufficiently far into the rectangular patch being scanned from the first pass at its edge that steady heat accumulation effect response is adopted, focusing on maximum temperature rise experienced across the pass' track. The model is non-dimensionalized to broaden the applicability of the output of its runs. Focusing on practical “high” scanning speeds, represented non-dimensionally by Peclet number (in excess of 40), applicability is further broadened by multiplying non-dimensional maximum temperature rise by the square root of Peclet number as model output. Additionally, investigating model runs at various non-dimensional speed (Peclet number) and reciprocation period values, it appears these do not act as independent inputs, but instead with their product (non-dimensional stroke length) as a single independent input. Modified maximum temperature rise output appears to be a function of only two inputs, increasing with decreasing non-dimensional values of stroke length and scanning increment, with outputs of models runs summarized compactly in a simple chart.


2021 ◽  
Vol 11 (11) ◽  
pp. 4947
Author(s):  
Myung-hwan Lim ◽  
Changhee Lee

To improve recycling quality, it is necessary to develop a demolition technology that can be combined with existing crushing methods that employ large shredding-efficient equipment. The efficient collection of bones in a segmentation dismantling method must be considered according to the procedure. Furthermore, there is a need for the development of partial dismantling technologies that enable efficient remodeling, maintenance, and reinforcement. In this study, we experimentally investigated the temperature-rise characteristics of reinforced concrete through partial rapid heating during high-frequency induced heating. Accordingly, the chemical and physical vulnerability characteristics of the reinforced concrete were verified by studying the thermal conduction on the surface of the rebars and the cracks caused by the thermal expansion pressure of the rebars. Furthermore, we aimed to verify the applicability of the proposed technology by specifying the vulnerability range of the reinforced concrete based on the heating range, as well as the appropriate energy consumption. We investigated the temperature rise and temperature distribution characteristics of the rebar surfaces based on diameter, length, bar placement conditions, heating distance, heating coil location, and output, using reinforced steel of grade SD345. Maximum powers of 5, 6, and 10 kW, and inductive heating were used to achieve satisfactory results.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yunpeng Yang ◽  
Zhihui Wen ◽  
Leilei Si ◽  
Xiangyu Xu

AbstractJoule heats which are generated by coals in an applied electric field are directly correlated with variation resistivity of electrical parameters of coals. Moreover, the joule heating effect is closely related with microstructural changes and relevant products of coal surface. In the present study, a self-developed applied direct current (DC) field was applied onto an experimental system of coals to investigate variation resistivity of electrical parameters of highly, moderately and lowly metamorphic coal samples. Moreover, breakdown voltages and breakdown field intensities of above three coal samples with different metamorphic grades were tested and calculated. Variation resistivity of electrical parameters of these three coal samples in 2 kV and 4 kV DC fields were analyzed. Results show that internal current of all coal samples increases continuously and tends to be stable gradually after reaching the “inflection point” at peak. The relationship between temperature rise effect on anthracite coal surface in an applied DC field and electrical parameters was discussed. The temperature rise process on anthracite coal surface is composed of three stages, namely, slowly warming, rapid warming and slow cooling to stabilize. The temperature rise effect on anthracite coal surface lags behind changes of currents which run through coal samples. There’s uneven temperature distribution on anthracite coal surface, which is attributed to the heterogeneity of coal samples. In the experiment, the highest temperature on anthracite coal surface 65.8 ℃ is far belower than the lowest temperature for pyrolysis-induced gas production of coals 200 ℃. This study lays foundations to study microstructural changes and relevant products on coal surface in an applied DC field.


2020 ◽  
Vol 39 (1) ◽  
pp. 54-62
Author(s):  
Hua Chen ◽  
Junjiang Chen ◽  
Weijun Wang ◽  
Huan Lin

AbstractThe multimode resonant cavity is the most common cavity. The material often shows on selective heating performance during the heating process due to the effect of microwave heating having a closely relationship with the electromagnetism parameters. This paper is based on finite difference time domain method (FDTD) to establish the electromagnetic-thermal model. The electromagnetic sensitivity property parameters of sodium chloride including relative dielectric constant, loss angle tangent and water content of sodium chloride is studied during the heating and drying process. The heating rate and the electric field distribution of sodium chloride, at the different water content, were simulated with the electromagnetic characteristic parameters changing. The results show that with the electromagnetic sensitivity property parameters varying, the electric field strength, heating rate and steady-state temperature of the heating material will all have a variety in the cavity. Some measures are proposed to improve the heating efficiency and ensure the stability of the microwave heating system in the industrial application.


Author(s):  
Yan Yin ◽  
Jiusheng Bao ◽  
Jinge Liu ◽  
Chaoxun Guo ◽  
Tonggang Liu ◽  
...  

Disc brakes have been applied in various automobiles widely and their braking performance has vitally important effects on the safe operation of automobiles. Although numerous researches have been conducted to find out the influential law and mechanism of working condition parameters like braking pressure, initial braking speed, and interface temperature on braking performance of disc brakes, the influence of magnetic field is seldom taken into consideration. In this paper, based on the novel automotive frictional-magnetic compound disc brake, the influential law of magnetic field on braking performance was investigated deeply. First, braking simulation tests of disc brakes were carried out, and then dynamic variation laws and mechanisms of braking torque and interface temperature were discussed. Furthermore, some parameters including average braking torque, trend coefficient and fluctuation coefficient of braking torque, average temperature, maximum temperature rise, and the time corresponding to the maximum temperature rise were extracted to characterize the braking performance of disc brakes. Finally, the influential law and mechanism of excitation voltage on braking performance were analyzed through braking simulation tests and surface topography analysis of friction material. It is concluded that the performance of frictional-magnetic compound disc brake is prior to common brake. Magnetic field is greatly beneficial for improving the braking performance of frictional-magnetic compound disc brake.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1847 ◽  
Author(s):  
Hoon Moon ◽  
Sivakumar Ramanathan ◽  
Prannoy Suraneni ◽  
Chang-Seon Shon ◽  
Chang-Joon Lee ◽  
...  

Blast furnace slag (SL) is an amorphous calcium aluminosilicate material that exhibits both pozzolanic and latent hydraulic activities. It has been successfully used to reduce the heat of hydration in mass concrete. However, SL currently available in the market generally experiences pre-treatment to increase its reactivity to be closer to that of portland cement. Therefore, using such pre-treated SL may not be applicable for reducing the heat of hydration in mass concrete. In this work, the adiabatic and semi-adiabatic temperature rise of concretes with 20% and 40% SL (mass replacement of cement) containing calcium sulfate were investigated. Isothermal calorimetry and thermal analysis (TGA) were used to study the hydration kinetics of cement paste at 23 and 50 °C. Results were compared with those with control cement and 20% replacements of silica fume, fly ash, and metakaolin. Results obtained from adiabatic calorimetry and isothermal calorimetry testing showed that the concrete with SL had somewhat higher maximum temperature rise and heat release compared to other materials, regardless of SL replacement levels. However, there was a delay in time to reach maximum temperature with increasing SL replacement level. At 50 °C, a significant acceleration was observed for SL, which is more likely related to the pozzolanic reaction than the hydraulic reaction. Semi-adiabatic calorimetry did not show a greater temperature rise for the SL compared to other materials; the differences in results between semi-adiabatic and adiabatic calorimetry are important and should be noted. Based on these results, it is concluded that the use of blast furnace slag should be carefully considered if used for mass concrete applications.


Author(s):  
Seiji Nomura ◽  
Kosaku Kurata ◽  
Hiroshi Takamatsu

The irreversible electroporation (IRE) is a novel method to ablate abnormal cells by applying a high voltage between two electrodes that are stuck into abnormal tissues. One of the advantages of the IRE is that the extracellular matrix (ECM) may be kept intact, which is favorable for healing. For a successful IRE, it is therefore important to avoid thermal damage of ECM resulted from the Joule heating within the tissue. A three-dimensional (3-D) analysis was conducted in this study to predict temperature rise during the IRE. The equation of electric field and the heat conduction equation were solved numerically by a finite element method. It was clarified that the highest temperature rise occurred at the base of electrodes adjacent to the insulated surface. The result was significantly different from a two-dimensional (2-D) analysis due to end effects, suggesting that the 3-D analysis is required to determine the optimal condition.


2021 ◽  
Author(s):  
Yao Li ◽  
Zixuan Zheng ◽  
Qun Li ◽  
Hongbin Pu

Abstract To examine the differences of thermal characteristics introduced by material thermal conductivity, anisotropic polycrystalline diamond (PCD) and GaN are analyzed based on the accurate model of grain sizes in the directions of parallel and vertical to the interface and an approximate solution of the phonon Boltzmann transport equation. Due to the space-variant grain structures of PCD, the inhomogeneous-anisotropic local thermal conductivity, homogeneous-anisotropic thermal conductivity averaged over the whole layer and the typical values of inhomogeneous-isotropic thermal conductivity are compared with/without anisotropic GaN thermal conductivity. The results show that the considerations of inhomogeneous-anisotropic PCD thermal conductivity and anisotropic GaN thermal conductivity are necessary for the accurate prediction of temperature rise in the GaN HEMT devices, and when ignoring both, the maximum temperature rise is undervalued by over 16 K for thermal boundary resistance (TBR) of 6.5 to 60 m2K/GW at power dissipation of 10 W/mm. Then the dependences of channel temperature on several parameters are discussed and the relations of thermal resistance with power dissipation are extracted at different base temperature. Compared with GaN, SiC and Si substrates, PCD is the most effective heat spreading layer though limited by the grain size at initial growth interface.


Sign in / Sign up

Export Citation Format

Share Document