scholarly journals Influence of MgO on the Hydration and Shrinkage Behavior of Low Heat Portland Cement-Based Materials via Pore Structural and Fractal Analysis

2022 ◽  
Vol 6 (1) ◽  
pp. 40
Author(s):  
Lei Wang ◽  
Xiao Lu ◽  
Lisheng Liu ◽  
Jie Xiao ◽  
Ge Zhang ◽  
...  

Currently, low heat Portland (LHP) cement is widely used in mass concrete structures. The magnesia expansion agent (MgO) can be adopted to reduce the shrinkage of conventional Portland cement-based materials, but very few studies can be found that investigate the influence of MgO on the properties of LHP cement-based materials. In this study, the influences of two types of MgO on the hydration, as well as the shrinkage behavior of LHP cement-based materials, were studied via pore structural and fractal analysis. The results indicate: (1) The addition of reactive MgO (with a reactivity of 50 s and shortened as M50 thereafter) not only extends the induction stage of LHP cement by about 1–2 h, but also slightly increases the hydration heat. In contrast, the addition of weak reactive MgO (with a reactivity of 300 s and shortened as M300 thereafter) could not prolong the induction stage of LHP cement. (2) The addition of 4 wt.%–8 wt.% MgO (by weight of binder) lowers the mechanical property of LHP concrete. Higher dosages of MgO and stronger reactivity lead to a larger reduction in mechanical properties at all of the hydration times studied. M300 favors the strength improvement of LHP concrete at later ages. (3) M50 effectively compensates the shrinkage of LHP concrete at a much earlier time than M300, whereas M300 compensates the long-term shrinkage more effectively than M50. Thus, M300 with an optimal dosage of 8 wt.% is suggested to be applied in mass LHP concrete structures. (4) The addition of M50 obviously refines the pore structures of LHP concrete at 7 days, whereas M300 starts to refine the pore structure at around 60 days. At 360 days, the concretes containing M300 exhibits much finer pore structures than those containing M50. (5) Fractal dimension is closely correlated with the pore structure of LHP concrete. Both pore structure and fractal dimension exhibit weak (or no) correlations with shrinkage of LHP concrete.

2021 ◽  
Vol 5 (3) ◽  
pp. 79
Author(s):  
Yang Li ◽  
Hui Zhang ◽  
Minghui Huang ◽  
Haibo Yin ◽  
Ke Jiang ◽  
...  

In cement-based materials, alkalis mainly exist in the form of different alkali sulfates. In this study, the impacts of different alkali sulfates on the shrinkage, hydration, pore structure, fractal dimension and microstructure of low-heat Portland cement (LHPC), medium-heat Portland cement (MHPC) and ordinary Portland cement (OPC) are investigated. The results indicate that alkali sulfates magnify the autogenous shrinkage and drying shrinkage of cement-based materials with different mineral compositions, which are mainly related to different pore structures and hydration processes. LHPC has the lowest shrinkage. Otherwise, the effect of alkali sulfates on the autogenous shrinkage is more profound than that of drying shrinkage. Compared with the pore size distribution, the fractal dimension can better characterize the shrinkage properties of cement-based materials. It is noted that the contribution of K2SO4 (K alkali) to the promotion effect of shrinkage on cement-based materials is more significant than that of Na2SO4 (Na alkali), which cannot be ignored. The microstructure investigation of different cement-based materials by means of nuclear magnetic resonance (NMR), mercury intrusion porosimetry (MIP) and scanning electron microscope (SEM) shows that this effect may be related to the different pore structures, crystal forms and morphologies of hydration products of cement-based materials.


2010 ◽  
Vol 168-170 ◽  
pp. 615-618
Author(s):  
Zhi Qin Du ◽  
Wei Sun

The effect of different quantity of air-entraining agent on the impermeability of cement-based materials are studied in this paper. Impermeability test and mercury intrusion porosimetry (MIP) method were used to characterize the impermeability and pore structures. The fractal dimension is used to describe the characteristic of pore structure and calculated by the data of MIP experiment. The result shows that owing to the improvement of pore structure, the impermeability performance of the cement-based composites is noticeably enhanced when air-entraining agent is added with appropriate quantity.


2014 ◽  
Vol 1712 ◽  
Author(s):  
Seyoon Yoon ◽  
Isabel Galan ◽  
Kemal Celik ◽  
Fredrik P. Glasser ◽  
Mohammed S. Imbabi

ABSTRACTCalcium sulfoaluminate (CSA) cements are being developed using a novel processing method having as its objective lowering specific CO2 emissions by ∼50% relative to a Portland cement benchmark. We need to be able to measure the properties of the products. Porosity and permeability measurements help define the engineering properties but their quantification is influenced by the choice of experimental protocols. In the present study we used ordinary Portland cement (PC) paste as a benchmark and hydrated ye’elimite, which is a main component of CSA cements, to understand its pore structure. We report on the use of synchrotron-sourced radiation for µCT (Computerized Tomography) and 3D image re-construction of the internal micro-pore structure of PC and ye’elimite-gypsum pastes. As a comparison, porosity and permeability measurements were traditionally obtained using Mercury Intrusion Porosimetry (MIP). The Mori-Tanaka method and the polynomial statistical model were used to analyze the effects of different 3-D micro-pore structures on mechanical properties. The results show that e micro-pore structures differ considerably between PC and ye’elimite pastes and their bulk modulus is significantly affected by the shapes of their micro-pore structures.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ki-Bong Park ◽  
Takafumi Noguchi

The aim of this work is to know clearly the effects of temperature in response to curing condition, hydration heat, and outside weather conditions on the strength development of high-performance concrete. The concrete walls were designed using three different sizes and three different types of concrete. The experiments were conducted under typical summer and winter weather conditions. Temperature histories at different locations in the walls were recorded and the strength developments of concrete at those locations were measured. The main factors investigated that influence the strength developments of the obtained samples were the bound water contents, the hydration products, and the pore structure. Testing results indicated that the elevated summer temperatures did not affect the early-age strength gain of concrete made using ordinary Portland cement. Strength development was significantly increased at early ages in concrete made using belite-rich Portland cement or with the addition of fly ash. The elevated temperatures resulted in a long-term strength loss in both belite-rich and fly ash containing concrete. The long-term strength loss was caused by a reduction in the degree of hydration and an increase in the total porosity and amount of smaller pores in the material.


2019 ◽  
Vol 8 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Yuan Gao ◽  
Hongwen Jing ◽  
Zefu Zhou

Abstract Nano cement additive using a hybrid of graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) combines the excellent affinity of GO and the superior mechanical properties of MWCNTs. Ultrasonication is the key process to disperse the GO/MWCNTs and further optimizes the pore structures of cement-based pastes. Fractal dimension can effectively and quantitatively characterize the pore structures of cementitious composites. The present study investigates the fractal dimensions of pore structures of GO/MWCNT-OPC pastes under power- and time-controlled ultrasonication based on the mercury intrusion porosimetry (MIP) tests data. The finding of this study shows that comparing to calculating the fractal dimension of the overall pore size range, assessing the variations of fractal dimension of individual pore size range is more effective in evaluating the pore characteristic. The fractal dimension of larger capillary pores $$\left( {{D}_{>{{10}^{4}}nm}} \right)$$can be use to describe the change of pore structure of GO/MWCNT-OPC pastes under ultrasonication treatment with sufficient accuracy as higher value of $${{D}_{>{{10}^{4}}nm}}$$indicates better pore characteristics. The fractal dimension change trend of mesopores is always opposite to that of bigger capillary pores. Modest increment in both power- and time-controlled ultrasonication seems to result in the increase of the fractal dimension of capillary pores and lead to better reinforcement effects. Prolongation of ultrasonication time slightly influences the pore structure of the specimens, while nano cement additives exposed to excess ultrasonication power fail to afford adequate reinforcing effect and finally cause the deterioration of the pore structures. The findings of this study can provide helpful information of GO/MWCNT-OPC pastes and ultrasonication treatment in the future.


1984 ◽  
Vol 42 ◽  
Author(s):  
Della M. Roy ◽  
G. M. Idorn

AbstractSubstantial increases of the strength of cement paste and mortars may be obtained in conventional processing by optimizing the materials components, the rheology and the curing, and thereby improving the microstructures. Cementitious materials with high proportions of granulated blast-furnace slag have been investigated. Higher strengths of ASTM C 109 mortars were obtained with 40 to 65% substitution of portland cement by slag, than with ordinary mix compositions and processing.For one set of mixtures, 28 day strengths ≥ 100 MPa (some as high as 240 MPa) were consistently attained after curing at temperatures ranging from 27 to 250°C. The slag substitutions developed finer pore structures as revealed by intrusion porosimetry measurements, than those with pure portland cement. This is believed to be a major reason for their enhanced durability. At each stage from 3 to 28 days, increase of curing temperatures from 27 to 90°C decreased porosity and increased the strength, reflecting an increased maturity.Implications for practice and suggestions for further work are discussed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zezhang Song ◽  
Junyi Zhao ◽  
Yuanyin Zhang ◽  
Dailin Yang ◽  
Yunlong Wang ◽  
...  

Fluid seepage performance and accumulation in tight sandstone is a critical research topic for in-depth exploration and development, closely related to the heterogeneity of the pore network. The fractal characterization is one of the most compelling and direct ways for quantitative investigation of heterogeneity. However, only one kind of fractal is used in most studies, and the differences and relations between different fractal dimensions are rarely discussed. This paper chose one of the most representative tight sandstone formations in China, the second member of the Xujiahe Formation, as the research object. First, based on physical analysis and XRD analysis, we carried out a qualitative investigation on pore structure utilizing thin-section and scanning electron microscopy. Then, detailed pore structure parameters were obtained using high-pressure mercury intrusion (HPMI). Lastly, we combined two-dimensional fractal analysis on thin-section images and three-dimensional fractal analysis on HPMI data to characterize the pore network heterogeneity quantitatively. The Xu2 tight sandstone is mainly medium- to fine-grained lithic feldspathic sandstone or feldspathic lithic sandstone with low porosity and permeability. Also, the Xujiahe tight sandstone is mainly composed of quartz, feldspar, and clay. The pore types of Xu2 tight sandstones are primarily intergranular pores, micro-fractures, and intra- and intergranular dissolution pores. Moreover, most of the micro-fractures in gas-bearing formation are open-ended, while most are filled by clay minerals in the dry formation. The r50 (median pore radius) is the most sensitive parameter to seepage capability (permeability) and gas-bearing status. The 2D fractal dimension (Ds) of gas-bearing samples is significantly larger than that of dry samples, while the 3D fractal dimension (D1, D2) of gas-bearing samples is lower than that of dry samples. There is a strong negative correlation between D2 and gas-bearing status, permeability, quartz content, and r50, but a positive correlation between Ds and these parameters. D2 represents the heterogeneity of pore space, while the Ds indicates the development of the pore network. Tectonic movements that generate micro-fractures and clay cementation that blocks the seepage channels are the two main controlling factors on fractal dimensions. Combining 2D and 3D fractal analysis could give a more in-depth investigation of pore structure.


MRS Advances ◽  
2018 ◽  
Vol 3 (34-35) ◽  
pp. 2051-2061
Author(s):  
Yunus Ballim

ABSTRACTThe hydration of cement is an exothermic reaction which generates around 300 kJ/kg of cement hydrated. In mass concrete structures such as dams and large foundations, this heat of hydration causes a significant rise in temperature in the internal sections of the concrete. If thermal gradients between the internal sections and the near-surface zone of the concrete element are sufficiently large, the thermal stress can cause cracking of the concrete. This cracking may cause functional or structural problems in the operation of the structure. In order to minimise the potential for such cracking, it is necessary to minimise the rate and amount of heat that is evolved, particularly during the early period of the hydration process. This can be achieved by design engineers and concrete technologists through judicious selection and processing of concrete-making materials. This paper presents the observations and results obtained over a number of years from adiabatic testing of concretes, computational modelling of temperature development in large concrete structures and direct temperature measurements in actual structures, with a view to understanding the effects of concrete-making materials on temperature development in concrete. The paper considers the effects of different types of rock aggregates, different types of Portland cement, fineness of grinding of the cement, the addition of supplementary cementitious materials and variations in the concrete starting temperature on temperature development in a large concrete element over time. The results indicate that using a coarser ground cement, adding significant amounts of supplementary cementitious materials and cooling the concrete mixture before placing has a more significant effect in reducing the risk of cracking than varying the aggregate type of the Portland cement type.


Sign in / Sign up

Export Citation Format

Share Document