scholarly journals Epigenetic Regulation of Inflammatory Responses in the Context of Physical Activity

Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1313
Author(s):  
Maciej Tarnowski ◽  
Patrycja Kopytko ◽  
Katarzyna Piotrowska

Epigenetic modifications occur in response to environmental changes and play a fundamental role in the regulation of gene expression. PA is found to elicit an inflammatory response, both from the innate and adaptive divisions of the immunological system. The inflammatory reaction is considered a vital trigger of epigenetic changes that in turn modulate inflammatory actions. The tissue responses to PA involve local and general changes. The epigenetic mechanisms involved include: DNA methylation, histone proteins modification and microRNA. All of them affect genetic expression in an inflammatory milieu in physical exercise depending on the magnitude of physiological stress experienced by the exerciser. PA may evoke acute or chronic biochemical and physiological responses and have a positive or negative immunomodulatory effect.

Author(s):  
Steffen Gay ◽  
Michel Neidhart

In higher eukaryotic organisms epigenetic modifications are crucial for proper chromatin folding and thereby proper regulation of gene expression. Epigenetics include DNA methylation, histone modifications, and microRNAs. First described in tumors, the involvement of aberrant epigenetic modifications has been reported also in other diseases, i.e. metabolic, psychiatric, inflammatory, and autoimmune. Deregulation of epigenetic mechanisms occurred in patients with rheumatoid arthritis, systemic lupus erythematosus, and scleroderma. Many questions remain: e.g. what is the cause of these epigenetic changes and how can we interfere in the pathological process? Here we discuss whether supplementation with methyl donors could represent a novel therapeutic concept for such diseases.


2013 ◽  
Vol 5 ◽  
pp. GEG.S11752 ◽  
Author(s):  
Istvan Seffer ◽  
Zoltan Nemeth ◽  
Gyula Hoffmann ◽  
Robert Matics ◽  
A. Gergely Seffer ◽  
...  

Morphological and functional changes of cells are important for adapting to environmental changes and associated with continuous regulation of gene expressions. Genes are regulated–in part–by epigenetic mechanisms resulting in alternating patterns of gene expressions throughout life. Epigenetic changes responding to the environmental and intercellular signals can turn on/off specific genes, but do not modify the DNA sequence. Most epigenetic mechanisms are evolutionary conserved in eukaryotic organisms, and several homologs of epigenetic factors are present in plants and animals. Moreover, in vitro studies suggest that the plant cytoplasm is able to induce a nuclear reassembly of the animal cell, whereas others suggest that the ooplasm is able to induce condensation of plant chromatin. Here, we provide an overview of the main epigenetic mechanisms regulating gene expression and discuss fundamental epigenetic mechanisms and factors functioning in both plants and animals. Finally, we hypothesize that animal genome can be repro-grammed by epigenetic factors from the plant protoplast.


2020 ◽  
Vol 477 (16) ◽  
pp. 3091-3104 ◽  
Author(s):  
Luciana E. Giono ◽  
Alberto R. Kornblihtt

Gene expression is an intricately regulated process that is at the basis of cell differentiation, the maintenance of cell identity and the cellular responses to environmental changes. Alternative splicing, the process by which multiple functionally distinct transcripts are generated from a single gene, is one of the main mechanisms that contribute to expand the coding capacity of genomes and help explain the level of complexity achieved by higher organisms. Eukaryotic transcription is subject to multiple layers of regulation both intrinsic — such as promoter structure — and dynamic, allowing the cell to respond to internal and external signals. Similarly, alternative splicing choices are affected by all of these aspects, mainly through the regulation of transcription elongation, making it a regulatory knob on a par with the regulation of gene expression levels. This review aims to recapitulate some of the history and stepping-stones that led to the paradigms held today about transcription and splicing regulation, with major focus on transcription elongation and its effect on alternative splicing.


Author(s):  
G. A. Sofronov ◽  
E. L. Patkin

One of the complex problems of modern experimental toxicology remains the molecular mechanism of formation of human health disorders separated at different time periods from acute or chronic exposure to toxic environmental pollutants (ecotoxicants). Identifying and understanding what epigenetic changes are induced by the environment, and how they can lead to unfavorable outcome, are vital for protecting public health. Therefore, we consider it important a modern understanding of epigenetic mechanisms involved in the life cycle of mammals and assess available data on the environmentally caused epigenetic toxicity and, accordingly fledging epigenenomic (epigenetic) regulatory toxicology.


2019 ◽  
Vol 16 (4) ◽  
pp. 386-391 ◽  
Author(s):  
Kenneth Lundstrom

Epigenetic mechanisms comprising of DNA methylation, histone modifications and gene silencing by RNA interference have been strongly linked to the development and progression of various diseases. These findings have triggered research on epigenetic functions and signal pathways as targets for novel drug discovery. Dietary intake has also presented significant influence on human health and disease development and nutritional modifications have proven important in prevention, but also the treatment of disease. Moreover, a strong link between nutrition and epigenetic changes has been established. Therefore, in attempts to develop novel safer and more efficacious drugs, both nutritional requirements and epigenetic mechanisms need to be addressed.


Coronaviruses ◽  
2020 ◽  
Vol 01 ◽  
Author(s):  
Verda Tunalıgil ◽  
Gülsen Meral ◽  
Ahmet Katı ◽  
Dhrubajyoti Chattopadhyay ◽  
Amit Kumar Mandal

Abstract:: Epigenetic changes in COVID-19 host, a pandemic-causing infectious agent that globally incapacitated communities in varying complexities and capacities are discussed, proposing an analogy that epigenetic processes contribute to disease severity and elevate the risk for death from infection. Percentages of hospitalization, with and without intensive care, in the presence of diseases with increased ACE2 expression, were compared, based on the best available data. Further analysis compared two different age groups, 19-64 and ≥65 years of age. The COVID-19 disease is observed to be the most severe in the 65-and-higher-age group with preexisting chronic conditions. This observational study is a non-experimental empirical investigation of the outcomes of COVID-19 in different patient groups. Results are promising for conducting clinical trials with intervention groups. To ultimately succeed in disease prevention, researchers and clinicians must integrate epigenetic mechanisms to generate valid prescriptions for global well-being.


Author(s):  
Govind Kannan ◽  
Zaira M Estrada-Reyes ◽  
Phaneendra Batchu ◽  
Brou Kouakou ◽  
Thomas H Terrill ◽  
...  

Abstract Social isolation can increase distress in goats, particularly when they cannot maintain visual contact with conspecifics. This experiment was conducted to determine the behavioral and physiological responses in goats during isolation with or without visual contact with conspecifics. Male Spanish goats (uncastrated, 8-mo old, average weight 29.4 ± 0.59 kg) were randomly assigned to a control (CO) group with no isolation or to one of four isolation treatment (TRT) pens (1.5 × 1.5 m) with: (1) open grill panels but with no visual contact with conspecifics (IO), (2) covered grill to prevent visual contact (IC), (3) open grill with visual contact (IV), or (3) covered grill with a 30 × 30 cm window to allow visual contact (IW) for 90 min of social isolation (n = 12 goats/TRT). Blood samples were collected at 0, 30, 60, and 90 min (Time) from isolated and control goats. The experiment was repeated one week later using the same animals, with each goat being subjected to the same isolation treatment the second time to study the effect of prior exposure to isolation. Friedman’s Two-Way ANOVA by Ranks Test in SAS showed that the median frequency of vocalization (rank score) in goats was high in IO group, low in IV and IW groups, and intermediate in IC group (P < 0.01). Vocalization rank score was also higher (P < 0.01) during the first 30 min of isolation in goats. Median frequency of visual contact was higher in the IW group than in the IV group (P < 0.01). Frequency of climbing behavior was high in IC and IO groups, low in IV group, and intermediate in IW group (P < 0.01). Repeated Measures Analysis using GLM procedures in SAS revealed that plasma cortisol and glucose concentrations tended (P < 0.1) to be the highest in IO group than in CO, IC, IV, and IW groups. Cortisol levels were also higher (Time; P < 0.05) at 0 and 90 min compared to 30 and 60 min. Norepinephrine concentrations decreased (P < 0.05) with Time, and plasma non-esterified fatty acid (NEFA) levels were affected by TRT × Time interaction (P < 0.01). Overall, epinephrine, norepinephrine, glucose, and NEFA concentrations were lower (P < 0.01) and cortisol concentrations and lymphocyte counts higher (P < 0.01) when goats were exposed to isolation the second time. The results showed that goats with no visual contact with conspecifics during social isolation had greater physiological stress responses and spent more time vocalizing or trying to escape the pen, which may indicate distress.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Yuko Tsunetsugu ◽  
Masaki Sugiyama

AbstractThis study investigates the physiological responses and subjective perceptions of touching wood. In particular, it focuses on their respective relationships with the amount of heat transfer across the hand–material interface during contact. The study participants included 55 university students (20 females and 35 males) who gave written informed consent. The participants’ blood pressure, pulse rate, and cerebral blood hemoglobin concentrations were measured continuously for 90 s while they gently held vertical bar-shaped specimens of Japanese cypress (Chamaecyparis obtusa), Japanese oak (Quercus crispula), polyethylene, and aluminum. The specimens also included wood with a surface coating. We measured subjective warmth and comfort as well as the heat flux between the palm and the surface of the material. The wooden materials were rated as significantly warmer compared to aluminum and polyethylene, regardless of the wood species (cypress or oak) or its coating; this result corresponds with smaller heat transfers in the wooden materials. Additionally, the wooden materials were more comfortable to hold as compared to the aluminum bar. Based on the changes in blood pressure, touching Japanese cypress and uncoated Japanese oak were interpreted to induce less physiological stress. Therefore, we can conclude that wood, with lower thermal conductivity, feels warm, and it causes relatively smaller physiological changes compared to other materials with higher thermal conductivity. Thus, they may present less physiological burdens when touched.


2002 ◽  
Vol 15 (3) ◽  
pp. 225-232 ◽  
Author(s):  
Joaquina Nogales ◽  
Rosario Campos ◽  
Hanaa BenAbdelkhalek ◽  
José Olivares ◽  
Carmen Lluch ◽  
...  

Characterization of nine transposon-induced mutants of Rhizobium tropici with decreased salt tolerance (DST) allowed the identification of eight gene loci required for adaptation to high external NaCl. Most of the genes also were involved in adaptation to hyperosmotic media and were required to overcome the toxicity of LiCl. According to their possible functions, genes identified could be classified into three groups. The first group included two genes involved in regulation of gene expression, such as ntrY, the sensor element of the bacterial ntrY/ntrX two-component regulatory system involved in regulation of nitrogen metabolism, and greA, which encodes a transcription elongation factor. The second group included genes related to synthesis, assembly, or maturation of proteins, such as alaS coding for alanine-tRNA synthetase, dnaJ, which encodes a molecular chaperone, and a nifS homolog probably encoding a cysteine desulfurase involved in the maturation of Fe-S proteins. Genes related with cellular build-up and maintenance were in the third group, such as a noeJ-homolog, encoding a mannose-1-phosphate guanylyltransferase likely involved in lipopolysaccharide biosynthesis, and kup, specifying an inner-membrane protein involved in potassium uptake. Another gene was identified that had no homology to known genes but that could be conserved in other rhizobia. When inoculated on Phaseolus vulgaris growing under nonsaline conditions, all DST mutants displayed severe symbiotic defects: ntrY and noeJ mutants were impaired in nodulation, and the remaining mutants formed symbiosis with very reduced nitrogenase activity. The results suggest that bacterial ability to adapt to hyper-osmotic and salt stress is important for the bacteroid nitrogen-fixing function inside the legume nodule and provide genetic evidence supporting the suggestion that rhizobia face severe environmental changes after their release into plant cells.


2007 ◽  
Vol 7 ◽  
pp. 1273-1284 ◽  
Author(s):  
Thomas G. Brock ◽  
Marc Peters-Golden

There is a growing appreciation for the wide variety of physiological responses that are regulated by lipid messengers. One particular group of lipid messengers, the eicosanoids, plays a central role in regulating immune and inflammatory responses in a receptor-mediated fashion. These mediators are related in that they are all derived from one polyunsaturated fatty acid, arachidonic acid. However, the various eicosanoids are synthesized by a wide variety of cell types by distinct enzymatic pathways, and have diverse roles in immunity and inflammation. In this review, the major pathways involved in the synthesis of eicosanoids, as well as key points of regulation, are presented.


Sign in / Sign up

Export Citation Format

Share Document