scholarly journals Examination of Genetic Variants Revealed from a Rat Model of Brain Ischemia in Patients with Ischemic Stroke: A Pilot Study

Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1938
Author(s):  
Andrey V. Khrunin ◽  
Gennady V. Khvorykh ◽  
Alexandra V. Rozhkova ◽  
Evgeniya A. Koltsova ◽  
Elizaveta A. Petrova ◽  
...  

Although there has been great progress in understanding the genetic bases of ischemic stroke (IS), many of its aspects remain underexplored. These include the genetics of outcomes, as well as problems with the identification of real causative loci and their functional annotations. Therefore, analysis of the results obtained from animal models of brain ischemia could be helpful. We have developed a bioinformatic approach exploring single nucleotide polymorphisms (SNPs) in human orthologues of rat genes expressed differentially under conditions of induced brain ischemia. Using this approach, we identified and analyzed nine SNPs in 553 Russian individuals (331 patients with IS and 222 controls). We explored the association of SNPs with both IS outcomes and with the risk of IS. SNP rs66782529 (LGALS3) was associated with negative IS outcomes (p = 0.048). SNPs rs62278647 and rs2316710 (PTX3) were associated significantly with IS (p = 0.000029 and p = 0.0025, respectively). These correlations for rs62278647 and rs2316710 were found only in women, which suggests a sex-specific association of the PTX3 polymorphism. Thus, this research not only reveals some new genetic associations with IS and its outcomes but also shows how exploring variations in genes from a rat model of brain ischemia can be of use in searching for human genetic markers of this disorder.

Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 328
Author(s):  
Gennady Khvorykh ◽  
Andrey Khrunin ◽  
Ivan Filippenkov ◽  
Vasily Stavchansky ◽  
Lyudmila Dergunova ◽  
...  

In this paper we propose a workflow for studying the genetic architecture of ischemic stroke outcomes. It develops further the candidate gene approach. The workflow is based on the animal model of brain ischemia, comparative genomics, human genomic variations, and algorithms of selection of tagging single nucleotide polymorphisms (tagSNPs) in genes which expression was changed after ischemic stroke. The workflow starts from a set of rat genes that changed their expression in response to brain ischemia and results in a set of tagSNPs, which represent other SNPs in the human genes analyzed and influenced on their expression as well.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yue-miao Zhang ◽  
Fa-juan Cheng ◽  
Xu-jie Zhou ◽  
Yuan-yuan Qi ◽  
Ping Hou ◽  
...  

Objectives. Numerous loci were identified to perturb gene expression intrans. As elevatedATG5expression was observed in systemic lupus erythematosus (SLE), the study was conducted to analyze the genome-wide genetic regulatory mechanisms associated withATG5expression in a Chinese population with lupus nephritis (LN).Methods. The online expression quantitative trait loci database was searched fortrans-expression single nucleotide polymorphisms (trans-eSNPs) ofATG5. Taggingtrans-eSNPs were genotyped by a custom-made genotyping chip in 280 patients and 199 controls. For positive findings, clinical information and bioinformation analyses were performed.Results. Fourtrans-eSNPs were observed to be associated with susceptibility to LN (P< 0.05), including ANKRD50 rs17008504, AGA rs2271100, PAK7 rs6056923, and TET2 rs1391441, while seven othertrans-eSNPs showed marginal significant associations (0.05 <P< 0.1). Correlations between thetrans-eSNPs andATG5expression and different expression levels ofATG5in SLE patients and controls were validated, and their regulatory effects were annotated. However, no significant associations were observed between different genotypes oftrans-eSNPs and severity or outcome of the patients.Conclusion. Using the new systemic genetics approach, we identified 10 loci associated with susceptibility to LN potentially, which may be complementary to future pathway based genetic studies.


2019 ◽  
Author(s):  
Lei Zhao ◽  
Jinghuan Fang ◽  
Muke Zhou ◽  
Jie Zhou ◽  
Lihua Yu ◽  
...  

Abstract Background Mutations of cyclooxygenase gene (COX gene) may increase the susceptibility of ischemic stroke. We investigated five variants (rs5788, rs1330344, rs3842788, rs20417, and rs689466) of two COX genes to explain the association between these polymorphisms and ischemic stroke risk determine whether gene–gene interaction between these genes increase the susceptibility of ischemic stroke or its subtypes. Methods A total of 1981 study subjects (1078 cases and 903 control subjects) were recruited. The interaction of multiple factors was investigated using Multifactor Dimensionality Reduction and additive effect of single nucleotide polymorphisms on ischemic stroke or its subtypes were analyzed by multiple factor logistic regression. Results At COX-1(rs1330344), AA genotype carriers had a lower susceptibility of ischemic stroke (OR=0.657, 95%CI= 0.437-0.988, P = 0.044), and A allele carriers had a lower susceptibility of ischemic stroke (OR=0.812, 95%CI= 0.657-0.978, P = 0.029). At COX-1(rs3842788), AA genotype carriers had a higher susceptibility of ischemic stroke (OR =5.203, 95% CI=1.519-5.159, P =0.016). At COX-2 (rs689466), AA genotype carriers had a higher susceptibility of large-artery atherosclerosis (OR =1.404, 95% CI=1.019-1.934, P =0.038). COX-1(rs1330344, rs3842788) and COX-2 rs689466 interacted in SVO, but had no additive effect with ischemic stroke or its subtypes. Conclusions At rs1330344, AA genotype may reduce the susceptibility of ischemic stroke. At rs3842788, AA genotype may increase the susceptibility of ischemic stroke. At rs689466, AA genotype may increase the susceptibility of large-artery atherosclerosis (LAA). COX-1(rs1330344, rs3842788) and COX-2 rs689466 interacted in small vessel occlusion (SVO), but had no additive effect with ischemic stroke or its subtypes.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Stella Marousi ◽  
Anna Antonacopoulou ◽  
Haralambos Kalofonos ◽  
Panagiotis Papathanasopoulos ◽  
Marina Karakantza ◽  
...  

Functional single-nucleotide polymorphisms (SNPs) of inflammatory cytokines have been previously related to the occurrence of an ischemic stroke (IS). We investigated whether five functional SNPs (i.e., TNF-α-308G>A, IL6-174G>C, IL12B 1188A>C, IL4-589C>T, and IL10-1082G>A) might be associated with the age of onset and 6-month outcome of an acute IS. A probe-free real-time PCR methodology was used to genotype 145 consecutively admitted cases with a first-ever IS. Simple Kaplan-Mayer and adjusted Cox regression analyses showed no association between inflammatory genotypes and the age of IS onset. IL6-174G>C, IL12B 1188A>C, IL4-589C>T, and IL10-1082G>A were not found to significantly contribute to the long-term outcome of the disease. However, carriage of the TNF-α-308 GG genotype was significantly associated with reduced odds for an adverse outcome. Larger studies are needed to confirm our results.


2016 ◽  
Vol 43 (6) ◽  
pp. 1045-1049 ◽  
Author(s):  
Kwangwoo Kim ◽  
So-Young Bang ◽  
Young Bin Joo ◽  
Taehyeung Kim ◽  
Hye-Soon Lee ◽  
...  

Objective.Cyclophosphamide (CYC) is an immunosuppressant drug widely used to treat various diseases including lupus nephritis, but its efficacy highly varies from individual to individual. This pharmacogenomics association study searched for genetic variations associated with CYC efficacy.Methods.Genome-wide association scan was performed for 109 Korean patients with systemic lupus erythematosus with lupus nephritis (classes III–V) who received intravenous CYC induction therapy. Genetic differences between responders and nonresponders were examined using Cochran–Armitage trend tests, and genotype imputation was used for defining the association locus.Results.Genetic polymorphisms in the Fcγ receptor gene (FCGR) cluster at human chromosome 1q23, previously associated with lupus nephritis susceptibility, were associated with the response to CYC treatment for lupus nephritis. Significant response association was found for 3 perfectly correlated (r2 = 1) single-nucleotide polymorphisms (SNP): rs6697139, rs10917686, and rs10917688, located between the FCGR2B and FCRLA genes (p = 3.4 × 10−8). Carriage of the minor alleles in these SNP was found only in nonresponders (31%) and none in responders (0%).Conclusion.This first genome-wide association approach for CYC response yielded a robust profile of genetic associations including large-effect SNP in the FCGR2B-FCRLA locus, which may provide better insights to CYC metabolism and efficacy.


2016 ◽  
Author(s):  
Mark Barash ◽  
Philipp E. Bayer ◽  
Angela van Daal

AbstractDespite intensive research on genetics of the craniofacial morphology using animal models and human craniofacial syndromes, the genetic variation that underpins normal human facial appearance is still largely elusive. Recent development of novel digital methods for capturing the complexity of craniofacial morphology in conjunction with high-throughput genotyping methods, show great promise for unravelling the genetic basis of such a complex trait.As a part of our efforts on detecting genomic variants affecting normal craniofacial appearance, we have implemented a candidate gene approach by selecting 1,201 single nucleotide polymorphisms (SNPs) and 4,732 tag SNPs in over 170 candidate genes and intergenic regions. We used 3-dimentional (3D) facial scans and direct cranial measurements of 587 volunteers to calculate 104 craniofacial phenotypes. Following genotyping by massively parallel sequencing, genetic associations between 2,332 genetic markers and 104 craniofacial phenotypes were tested.An application of a Bonferroni–corrected genome–wide significance threshold produced significant associations between five craniofacial traits and six SNPs. Specifically, associations of nasal width with rs8035124 (15q26.1), cephalic index with rs16830498 (2q23.3), nasal index with rs37369 (5q13.2), transverse nasal prominence angle with rs59037879 (10p11.23) and rs10512572 (17q24.3), and principal component explaining 73.3% of all the craniofacial phenotypes, with rs37369 (5p13.2) and rs390345 (14q31.3) were observed.Due to over-conservative nature of the Bonferroni correction, we also report all the associations that reached the traditional genome-wide p-value threshold (<5.00E-08) as suggestive. Based on the genome-wide threshold, 8 craniofacial phenotypes demonstrated significant associations with 34 intergenic and extragenic SNPs. The majority of associations are novel, except PAX3 and COL11A1 genes, which were previously reported to affect normal craniofacial variation.This study identified the largest number of genetic variants associated with normal variation of craniofacial morphology to date by using a candidate gene approach, including confirmation of the two previously reported genes. These results enhance our understanding of the genetics that determines normal variation in craniofacial morphology and will be of particular value in medical and forensic fields.Author SummaryThere is a remarkable variety of human facial appearances, almost exclusively the result of genetic differences, as exemplified by the striking resemblance of identical twins. However, the genes and specific genetic variants that affect the size and shape of the cranium and the soft facial tissue features are largely unknown. Numerous studies on animal models and human craniofacial disorders have identified a large number of genes, which may regulate normal craniofacial embryonic development.In this study we implemented a targeted candidate gene approach to select more than 1,200 polymorphisms in over 170 genes that are likely to be involved in craniofacial development and morphology. These markers were genotyped in 587 DNA samples using massively parallel sequencing and analysed for association with 104 traits generated from 3-dimensional facial images and direct craniofacial measurements. Genetic associations (p-values<5.00E-08) were observed between 8 craniofacial traits and 34 single nucleotide polymorphisms (SNPs), including two previously described genes and 26 novel candidate genes and intergenic regions. This comprehensive candidate gene study has uncovered the largest number of novel genetic variants affecting normal facial appearance to date. These results will appreciably extend our understanding of the normal and abnormal embryonic development and impact our ability to predict the appearance of an individual from a DNA sample in forensic criminal investigations and missing person cases.


Sign in / Sign up

Export Citation Format

Share Document