scholarly journals Using PS-InSAR with Sentinel-1 Images for Deformation Monitoring in Northeast Algeria

Geosciences ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 315
Author(s):  
Omar Beladam ◽  
Timo Balz ◽  
Bahaa Mohamadi ◽  
Mahdjoub Abdalhak

Constantine city, Algeria, and its surroundings have always been affected by natural and human-induced slope instability and subsidence. Neogene clay-conglomeratic formations, which form the largest part of Constantine city, are extremely sensitive to the presence of water, which makes them susceptible to landslides. Fast and accurate identification and monitoring of the main areas facing existing or potential hazardous risks at a regional scale, as well as measuring the amount of displacement is essential for the conservation and sustainable development of Constantine. In the last three decades, the application of radar interferometry techniques for the measurement of millimeter-level terrain motions has become one of the most powerful tools for ground deformation monitoring due to its large coverage and low costs. Persistent scatterer interferometry (PS-InSAR) has a demonstrated potential for monitoring a range of hazard event scenarios and tracking their spatiotemporal evolution. We demonstrate the efficiency of Sentinel-1 data for deformation monitoring in Constantine located in the northeast of Algeria, and how an array of information such as geological maps and ground-measurements are integrated for deformation mapping. We conclude this article with a discussion of the potential of advanced differential radar interferometry approaches and their applicability for structural and ground deformation monitoring, including the advantages and challenges of these approaches in the north of Algeria.

2022 ◽  
Vol 14 (2) ◽  
pp. 309
Author(s):  
Feng Zhao ◽  
Teng Wang ◽  
Leixin Zhang ◽  
Han Feng ◽  
Shiyong Yan ◽  
...  

With the launch of the Sentinel-1 satellites, it becomes easy to obtain long time-series dual-pol (i.e., VV and VH channels) SAR images over most areas of the world. By combining the information from both VV and VH channels, the polarimetric persistent scatterer interferometry (PolPSI) techniques is supposed to achieve better ground deformation monitoring results than conventional PSI techniques (using only VV channel) with Sentinel-1 data. According to the quality metric used for polarimetric optimizations, the most commonly used PolPSI techniques can be categorized into three main categories. They are PolPSI-ADI (amplitude dispersion index as the phase quality metric), PolPSI-COH (coherence as the phase quality metric), and PolPSI-AOS (taking adaptive optimization strategies). Different categories of PolPSI techniques are suitable for different study areas and with different performances. However, the study that simultaneously applies all the three types of PolPSI techniques on Sentinel-1 PolSAR images is rare. Moreover, there has been little discussion about different characteristics of the three types of PolPSI techniques and how to use them with Sentinel-1 data. To this end, in this study, three data sets in China have been used to evaluate the three types of PolPSI techniques’ performances. Based on results obtained, the different characteristics of PolPSI techniques have been discussed. The results show that all three PolPSI techniques can improve the phase quality of interferograms. Thus, more qualified pixels can be used for ground deformation estimation by PolPSI methods with respect to the PSI technique. Specifically, this pixel density improvement is 50%, 12%, and 348% for the PolPSI-ADI, PolPSI-COH, and POlPSI-AOS, respectively. PolPSI-ADI is the most efficient method, and it is the first choice for the area with abundant deterministic scatterers (e.g., urban areas). Benefitting from its adaptive optimization strategy, PolPSI-AOS has the best performances at the price of highest computation cost, which is suitable for rural area applications. On the other hand, limited by the medium resolution of Sentinel-1 PolSAR images, PolPSI-COH’s improvement with respect to conventional PSI is relatively insignificant.


Author(s):  
M. Crosetto ◽  
L. Solari ◽  
J. Balasis-Levinsen ◽  
N. Casagli ◽  
M. Frei ◽  
...  

Abstract. The Persistent Scatterer Interferometry is a powerful technique for ground motion detection and monitoring over wide areas. In the recent years, PSI has undergone a rapid evolution, largely thanks to the launch of the Copernicus Sentinel-1 constellation, the refinement of algorithms, and the increased computational capabilities. These factors allow for using Sentinel-1 interferometric data to develop ground deformation services for wide-area monitoring. Firstly, we review examples of services for national or regional deformation monitoring. The paper then describes the European Ground Motion Service (EGMS), part of the Copernicus Land Monitoring Service. The EGMS represents a unique initiative for performing ground deformation monitoring on a European scale.


2019 ◽  
Vol 11 (23) ◽  
pp. 2822 ◽  
Author(s):  
Fabio Matano

The high levels of geo-hydrological, seismic, and volcanic hazards in the Campania region prompted full data collection from C-band satellites ERS-1/2, ENVISAT, and RADARSAT within regional (TELLUS) and national (PST-A) projects. The quantitative analysis, interpretation, and classification of natural and human-induced slow-rate ground deformations across a span of two decades (1992–2010) was performed at regional scale (Campania, Italy) by using interferometric archive datasets, based on the Persistent Scatterer Interferometry approach. As radar satellite sensors have a side-looking view, the post-processing of the interferometric datasets allows for the evaluation of two spatial components (vertical and E-W horizontal ones) of ground deformation, while the N-S horizontal component cannot be detected. The ground deformation components have been analyzed across 89.5% of the Campania territory within a variety of environmental, topographical, and geological conditions. The main part (57%) of the regional territory was characterized during 1992–2010 by stable areas, where SAR signals do not have recorded significant horizontal and vertical components of ground deformation with an average annual rate greater than +1 mm/yr or lower than −1 mm/yr. Within the deforming areas, the coastal plains are characterized by widespread and continuous strong subsidence signals due to sediment compaction locally enhanced by human activity, while the inner plain sectors show mainly scattered spots with locally high subsidence in correspondence of urban areas, sinkholes, and groundwater withdrawals. The volcanic sectors show interplaying horizontal and vertical trends due to volcano-tectonic processes, while in the hilly and mountain inner sectors the ground deformation is mainly controlled by large-scale tectonic activity and by local landslide activity. The groundwater-related deformation is the dominant cause of human-caused ground deformation. The results confirm the importance of using Persistent Scatterer Interferometry data for a comprehensive understanding of rates and patterns of recent ground deformation at regional scale also within tectonically active areas as in Campania region.


2020 ◽  
Vol 12 (19) ◽  
pp. 3145
Author(s):  
Sen Du ◽  
Jordi J. Mallorqui ◽  
Hongdong Fan ◽  
Meinan Zheng

Ground subsidences, either caused by natural phenomena or human activities, can threaten the safety of nearby infrastructures and residents. Among the different causes, mining operations can trigger strong subsidence phenomena with a fast nonlinear temporal behaviour. Therefore, a reliable and precise deformation monitoring is of great significance for safe mining and protection of facilities located above or near the mined-out area. Persistent Scatterer Interferometry (PSI) is a technique that uses stacks Synthetic Aperture Radar (SAR) images to remotely monitor the ground deformation of large areas with a high degree of precision at a reasonable cost. Unfortunately, PSI presents limitations when monitoring large gradient deformations when there is phase ambiguity among adjacent Persistent Scatterer (PS) points. In this paper, an improvement of PSI processing, named as External Model-based Deformation Decomposition PSI (EMDD-PSI), is proposed to address this limitation by taking advantage of an external model. The proposed method first uses interferograms generated from SAR Single Look Complex (SLC) images to optimize the parameter adjustments of the external model. Then, the modelled spatial distribution of subsidence is utilized to reduce the fringes of the interferograms generated from the SAR images and to ease the PSI processing. Finally, the ground deformation is retrieved by jointly adding the external model and PSI results. In this paper, fourteen Radarsat-2 SAR images over Fengfeng mining area (China) are used to demonstrate the capabilities of the proposed method. The results are evaluated by comparing them with leveling data of the area covering the same temporal period. Results have shown that, after the optimization, the model is able to mimic the real deformation and the fringes of the interferograms can be effectively reduced. As a consequence, the large gradient deformation then can be better retrieved with the preservation of the nonlinear subsidence term. The ground truth shows that, comparing with the classical PSI and PSI with unadjusted parameters, the proposed scheme reduces the error by 35.2% and 20.4%, respectively.


Author(s):  
M. Crosetto ◽  
L. Solari

Abstract. The paper is focused on the Persistent Scatterer Interferometry (PSI) technique. First, it addresses the substantial evolution of PSI in the last twenty years. Three main factors are identified: the availability of SAR images, the development of advanced data processing techniques, and the increase of the computation capability. The paper then addresses the PSI deformation monitoring initiatives at regional and national scale. Finally, in the last section, it is described a pan European deformation monitoring service: the European Ground Motion Service (EGMS).


2019 ◽  
Vol 11 (2) ◽  
pp. 129 ◽  
Author(s):  
José Delgado Blasco ◽  
Michael Foumelis ◽  
Chris Stewart ◽  
Andrew Hooper

Land subsidence in urban environments is an increasingly prominent aspect in the monitoring and maintenance of urban infrastructures. In this study we update the subsidence information over Rome and its surroundings (already the subject of past research with other sensors) for the first time using Copernicus Sentinel-1 data and open source tools. With this aim, we have developed a fully automatic processing chain for land deformation monitoring using the European Space Agency (ESA) SentiNel Application Platform (SNAP) and Stanford Method for Persistent Scatterers (StaMPS). We have applied this automatic processing chain to more than 160 Sentinel-1A images over ascending and descending orbits to depict primarily the Line-Of-Sight ground deformation rates. Results of both geometries were then combined to compute the actual vertical motion component, which resulted in more than 2 million point targets, over their common area. Deformation measurements are in agreement with past studies over the city of Rome, identifying main subsidence areas in: (i) Fiumicino; (ii) along the Tiber River; (iii) Ostia and coastal area; (iv) Ostiense quarter; and (v) Tivoli area. Finally, post-processing of Persistent Scatterer Inteferometry (PSI) results, in a Geographical Information System (GIS) environment, for the extraction of ground displacements on urban infrastructures (including road networks, buildings and bridges) is considered.


Sign in / Sign up

Export Citation Format

Share Document