scholarly journals A Network Dynamics Model for the Transmission of COVID-19 in Diamond Princess and a Response to Reopen Large-Scale Public Facilities

Healthcare ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 139
Author(s):  
Yuchen Zhu ◽  
Ying Wang ◽  
Chunyu Li ◽  
Lili Liu ◽  
Chang Qi ◽  
...  

Background: The current epidemic of COVID-19 has become the new normal. However, the novel coronavirus is constantly mutating. In public transportation or large entertainment venues, it can spread more quickly once an infected person is introduced. This study aims to discuss whether large public facilities can be opened and operated under the current epidemic situation. Methods: The dual Barabási–Albert (DBA) model was used to build a contact network. A dynamics compartmental modeling framework was used to simulate the COVID-19 epidemic with different interventions on the Diamond Princess. Results: The effect of isolation only was minor. Regardless of the transmission rate of the virus, joint interventions can prevent 96.95% (95% CI: 96.70–97.15%) of infections. Compared with evacuating only passengers, evacuating the crew and passengers can avoid about 11.90% (95% CI: 11.83–12.06%) of infections; Conclusions: It is feasible to restore public transportation services and reopen large-scale public facilities if monitoring and testing can be in place. Evacuating all people as soon as possible is the most effective way to contain the outbreak in large-scale public facilities.

Healthcare ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 126
Author(s):  
Hai-Feng Ling ◽  
Zheng-Lian Su ◽  
Xun-Lin Jiang ◽  
Yu-Jun Zheng

In a large-scale epidemic, such as the novel coronavirus pneumonia (COVID-19), there is huge demand for a variety of medical supplies, such as medical masks, ventilators, and sickbeds. Resources from civilian medical services are often not sufficient for fully satisfying all of these demands. Resources from military medical services, which are normally reserved for military use, can be an effective supplement to these demands. In this paper, we formulate a problem of integrated civilian-military scheduling of medical supplies for epidemic prevention and control, the aim of which is to simultaneously maximize the overall satisfaction rate of the medical supplies and minimize the total scheduling cost, while keeping a minimum ratio of medical supplies reservation for military use. We propose a multi-objective water wave optimization (WWO) algorithm in order to efficiently solve this problem. Computational results on a set of problem instances constructed based on real COVID-19 data demonstrate the effectiveness of the proposed method.


Author(s):  
Andrea Maugeri ◽  
Martina Barchitta ◽  
Sebastiano Battiato ◽  
Antonella Agodi

Italy was the first country in Europe which imposed control measures of travel restrictions, quarantine and contact precautions to tackle the epidemic spread of the novel coronavirus (SARS-CoV-2) in all its regions. While such efforts are still ongoing, uncertainties regarding SARS-CoV-2 transmissibility and ascertainment of cases make it difficult to evaluate the effectiveness of restrictions. Here, we employed a Susceptible-Exposed-Infectious-Recovered-Dead (SEIRD) model to assess SARS-CoV-2 transmission dynamics, working on the number of reported patients in intensive care unit (ICU) and deaths in Sicily (Italy), from 24 February to 13 April. Overall, we obtained a good fit between estimated and reported data, with a fraction of unreported SARS-CoV-2 cases (18.4%; 95%CI = 0–34.0%) before 10 March lockdown. Interestingly, we estimated that transmission rate in the community was reduced by 32% (95%CI = 23–42%) after the first set of restrictions, and by 80% (95%CI = 70–89%) after those adopted on 23 March. Thus, our estimates delineated the characteristics of SARS-CoV2 epidemic before restrictions taking into account unreported data. Moreover, our findings suggested that transmission rates were reduced after the adoption of control measures. However, we cannot evaluate whether part of this reduction might be attributable to other unmeasured factors, and hence further research and more accurate data are needed to understand the extent to which restrictions contributed to the epidemic control.


2020 ◽  
Author(s):  
Fabiana Volpato ◽  
Daiana Lima-Morales ◽  
Priscila Lamb Wink ◽  
Julia Willig ◽  
Fernanda de-Paris ◽  
...  

RT-qPCR for SARS-CoV-2 is the main diagnostic test used to identify the novel coronavirus. Several countries have used large scale SARS-CoV-2 RT-qPCR testing as one of the important strategies for combating the pandemic. In order to process the massive needs for coronavirus testing, the usual throughput of routine clinical laboratories has reached and often surpassed its limits and new approaches to cope with this challenge must be developed. This study has aimed to evaluate the use pool of samples as a strategy to optimize the diagnostic of SARS-CoV-2 by RT-qPCR in a general population. A total of 220 naso/orofaryngeal swab samples were collected and tested using two different protocols of sample pooling. In the first protocol (Protocol A); 10 clinical samples were pooled before RNA extraction. The second protocol (Protocol B) consisted of pooling the already extracted RNAs from 10 individual samples. Results from Protocol A were identical (100% agreement) with the individual results. However, for results from Protocol B, reduced agreement (91%) was observed in relation to results obtained by individual testing. Inconsistencies observed were related to RT-qPCR results with higher Cycle Thresholds (Ct > 32.73). Furthermore, in pools containing more than one positive individual, the Ct of the pool was equivalent to the lowest Ct among the individual results. These results provide additional evidence in favor of the clinical use of pooled samples for SARS-CoV-2 diagnosis by RT-qPCR and suggest that pooling of samples before RNA extraction is preferrable in terms of diagnostic yield.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lingbo Li ◽  
Ying Fan ◽  
An Zeng ◽  
Zengru Di

The novel coronavirus (COVID-19) pandemic is intensifying all over the world, but some countries, including China, have developed extensive and successful experience in controlling this pandemic. In this context, some questions arise naturally: What can countries caught up in the epidemic learn from China’s experience? In regions where the outbreak is under control, what would lead to a resurgence of the epidemic? To address these issues, we investigate China’s experience in anticontagion interventions and reopening process, focusing on the coevolution of epidemic and awareness during COVID-19 outbreak. Through an empirical analysis based on large-scale data and simulation based on a metapopulation and multilayer network model, we ascertain the impact of human movements and awareness diffusion on the epidemic, elucidate the inherent patterns and effective interventions of different epidemic prevention methods, and highlight the crunch time of each measure. The results are also employed to analyze COVID-19 evolution in other countries so as to find unified rules in complex situations around the world and provide advice on anticontagion and reopening policies. Our findings explain some key mechanisms of epidemic prevention and may help the epidemic analysis and decision-making in various countries suffering from COVID-19.


2020 ◽  
Author(s):  
Solym Mawaki Manou-Abi ◽  
Julien Balicchi

AbstractIn order to anticipate a future trends in the development of the novel coronavirus COVID-19 epidemic started early at march 13, in the french overseas department Mayotte, we consider in this paper a modified deterministic and stochastic epidemic model. The model divides the total population into several possible states or compartment: susceptible (S), exposed (E) infected and being under an incubation period, infected (I) being infectious, simple or mild removed RM, severe removed (including hospitalized) RS and death cases (D). The adding of the two new compartment RM and RS are driven by data which together replace the original R compartment in the classical SEIR model.We first fit the constant transmission rate parameter to the epidemic data in Mayotte during an early exponential growth phase using an algorithm with a package of the software R and based on a Maximum Likewood estimator. This allows us to predict the epidemic without any control in order to understand how the control measure and public policies designed are having the desired impact of controlling the epidemic. To do this, we introduce a temporally varying decreasing transmission rate parameter with a control or quarantine parameter q. Then we pointed out some values of q to maintain control which is critical in Mayotte given the fragility of its health infrastructure and the significant fraction of the population without access to water.


2021 ◽  
Vol 12 (4(I)) ◽  
pp. 19-27
Author(s):  
Moein Mirani Ahangarkolaei ◽  
Eser Demir ◽  
Tolga Constantinou ◽  
Mostafa Toranji ◽  
Tadashi Adino ◽  
...  

Global pandemics are associated with substantial losses of human capital. The best strategy of policymakers in public health before a population-wide vaccination is to reduce the outbreak of the disease and finding ways to alleviate its negative consequences in society. Previous studies show that welfare programs have externalities in unintended areas and for unplanned outcomes including a wide range of health outcomes. In this paper, we show that payments under the Unemployment Insurance (UI) program have the potential to reduce the spread of the novel coronavirus. Applying a difference-in-difference technique on monthly data of all US counties from January 2020 to January 2021, we document that the social insurance under the umbrella of UI payments can reduce the transmission rate of Covid-19. The results show heterogeneity across subsample with the largest effects among blacks, poor, and low educated regions


2020 ◽  
Author(s):  
Yanjin Wang ◽  
Pei Wang ◽  
Shudao Zhang ◽  
Hao Pan

Abstract Motivated by the quick control in Wuhan, China, and the rapid spread in other countries of COVID-19, we investigate the questions that what is the turning point in Wuhan by quantifying the variety of basic reproductive number after the lockdown city. The answer may help the world to control the COVID-19 epidemic. A modified SEIR model is used to study the COVID-19 epidemic in Wuhan city. Our model is calibrated by the hospitalized cases. The modeling result gives out that the means of basic reproductive numbers are 1.5517 (95% CI 1.1716-4.4283) for the period from Jan 25 to Feb 11, 2020, and 0.4738(95% CI 0.0997-0.8370) for the period from Feb 12 to Mar 10. The transmission rate fell after Feb 12, 2020 as a result of China’s COVID-19 strategy of keeping society distance and the medical support from all China, but principally because of the clinical symptoms to be used for the novel coronavirus pneumonia (NCP) confirmation in Wuhan since Feb 12, 2020. Clinical diagnosis can quicken up NCP-confirmation such that the COVID-19 patients can be isolated without delay. So the clinical symptoms pneumonia-confirmation is the turning point of the COVID-19 battle of Wuhan. The measure of clinical symptoms pneumonia-confirmation in Wuhan has delayed the growth and reduced size of the COVID-19 epidemic, decreased the peak number of the hospitalized cases by 96% in Wuhan. Our modeling also indicates that the earliest start date of COVID-19 in Wuhan may be Nov 2, 2019.


2021 ◽  
Author(s):  
Dong Liu ◽  
Chi Kong Tse ◽  
Rosa H. M. Chan ◽  
Choujun Zhan

Abstract Approval of emergency use of the Novel Coronavirus Disease 2019 (COVID-19) vaccines in many countries has brought hope to ending the COVID-19 pandemic sooner. Considering the limited vaccine supply in the early stage of COVID-19 vaccination programs in most countries, a highly relevant question to ask is: who should get vaccinated first? In this article we propose a network information- driven vaccination strategy where a small number of people in a network (population) are categorized, according to a few key network properties, into priority groups. Using a network-based SEIR model for simulating the pandemic progression, the network information-driven vaccination strategy is compared with a random vaccination strategy. Results for both large-scale synthesized networks and real social networks have demonstrated that the network information-driven vaccination strategy can significantly reduce the cumulative number of infected individuals and lead to a more rapid containment of the pandemic. The results provide insight for policymakers in designing an effective early-stage vaccination plan.


2021 ◽  
Author(s):  
Mayank Kapoor ◽  
Prasan Kumar Panda ◽  
Vivek Mohanty

Most viral infections have limited treatment options available and the same holds for COVID-19, its causative agent being the SARS-CoV-2 virus. Drugs used in the past against Severe Acute Respiratory Syndrome (SARS) or Middle East Respiratory Syndrome (MERS) viruses, which belong to the same family of viruses as the novel Coronavirus included ribavirin, interferon (alfa and beta), lopinavir-ritonavir combination, and corticosteroids. There remains controversy regarding their efficacy to date, except for the last one. Hence, large-scale multicentric trials are being conducted involving multiple drugs. Chloroquine and hydroxy-chloroquine were initially taking the race ahead but have now been rejected. Remdesivir was a promising candidate, for which the FDA had issued an emergency use authorization, but now is not recommended by the WHO. Convalescent plasma therapy had promising results in the early severe viremia phase, but the PLACID trial made an obscure end. Only corticosteroids have shown demonstrable benefits in improving mortality rates among severe COVID-19 cases. Many new modalities like monoclonal antibodies and tyrosine kinase inhibitors are discussed. In this chapter, we review the therapeutic drugs under investigation for the COVID-19 treatment, their mode of action, degree of effectiveness, and recommendations by different centers regarding their use in current settings.


Author(s):  
Albina Ayratovna Zvegintseva ◽  
Maksim Leonidovich Maksimov

Since the Spanish flu in 1918, there has not been such a large-scale pandemic, causing significant damage to the economy of Russia and other countries, as the novel coronavirus infection COVID-19, which began in December 2019. The SARS-CoV-2 virus is highly infectious and can proceed both asymptomatic and in an extremely severe form, especially in the presence of comorbidity. Despite the fact that the clinical picture is associated with respiratory syndrome, long-term neurological symptoms are increasingly observed. In this study, we tried to find out the most pronounced and long-lasting neurological symptoms in the first 6 months after the novel coronavirus infection COVID-19. An important role in the rehabilitation process of this group of patients is played by the strategy of neurocytoprotection, which is aimed at preventing and reducing neuronal damage by affecting the cellular mechanisms of neuroregeneration and cerebral reorganization, which leads not only to structural and metabolic, but also to functional recovery.


Sign in / Sign up

Export Citation Format

Share Document