scholarly journals Genome-Wide Identification of the 1-Aminocyclopropane-1-carboxylic Acid Synthase (ACS) Genes and Their Possible Role in Sand Pear (Pyrus pyrifolia) Fruit Ripening

Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 401
Author(s):  
Jing-Guo Zhang ◽  
Wei Du ◽  
Jing Fan ◽  
Xiao-Ping Yang ◽  
Qi-Liang Chen ◽  
...  

Ethylene production is negatively associated with storage life in sand pear (Pyrus pyrifoliaNakai), particularly at the time of fruit harvest. 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is the rate-limiting enzyme in ethylene biosynthesisand is considered to be important for fruit storage life. However, the candidate ACS genes and their roles in sand pear remain unclear. The present study identified 13ACS genes from the sand pear genome.Phylogenetic analysiscategorizedthese ACS genesinto four subgroups (type Ⅰ, type Ⅱ, type Ⅲ and putative AAT), and indicated a close relationship between sand pear and Chinese white pear (P. bretschneideri). According to the RNA-seq data and qRT-PCR analysis, PpyACS1, PpyACS2, PpyACS3, PpyACS8, PpyACS9, PpyACS12 and PpyACS13 were differently expressed in climacteric and non-climacteric-typepear fruits,‘Ninomiyahakuri’ and ‘Eli No.2′, respectively, during fruit ripening. In addition, the expressions of PpyACS2, PpyACS8, PpyACS12 and PpyACS13 werefound to be associated with system 1 of ethylene production, while PpyACS1, PpyACS3, and PpyACS9 werefound to be associated with system 2, indicating that these ACS genes have different roles in ethylenebiosynthesis during fruit development. Overall, our study provides fundamental knowledge onthe characteristics of the ACS gene family in sand pear, in addition to their possible roles infruit ripening.

Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 476 ◽  
Author(s):  
Shi ◽  
Zhang ◽  
Chen

The economic value of fruit is reduced by having a short shelf life. Whangkeumbae is a type of sand pear (Pyrus pyrifolia) considered a climacteric fruit. The pear is famous for its smooth surface and good flavor. However, its shelf life is very short because of senescence and disease after harvest and a burst of ethylene (ET) production prompting the onset of fruit ripening. In plants, ETHYLENE INSENSITIVE3 (EIN3) and EIN3like (EIL), located in the nucleus, are important components of the ET signaling pathway and act as transcription factors. EIN3s and EILs belong to a small family involved in regulating the expression of ethylene response factor gene (ERF), whose encoding protein is the final component in the ET signaling pathway. The mutation of these components will cause defects in the ethylene pathway. In this study, one gene encoding an EIN3 was cloned and identified from Whangkeumbae and designated PpEIN3b. The deduced PpEIN3b contained a conserved EIN3 domain, a bipartite nuclear localization signal profile (NLS_BP), and an N-6 adenine-specific DNA methylase signature (N6_MTASE). PpEIN3b belongs to the EIN3 super-family by phylogenetic analysis. Quantitative RT-PCR (qRT-PCR) analysis revealed that PpEIN3b was preferentially expressed in fruit. Additionally, its expression was developmentally regulated during fruit ripening and senescence. Furthermore, PpEIN3b transcripts were obviously repressed by salicylic acid (SA) and glucose treatment in pear fruit and in diseased fruit, while it was significantly induced by 1-aminocyclopropane-1-carboxylic acid (ACC) treatment. Taken together, our results reveal the expression and regulation profiles of PpEIN3b and suggest that PpEIN3b might integrate SA, glucose, and ACC signaling to regulate fruit ripening and senescence in pear, which would provide a candidate gene for this regulation to obtain fruit with a long shelf life and improved economic value.


2021 ◽  
Author(s):  
Yinglin Ji ◽  
Yi Qu ◽  
Zhongyu Jiang ◽  
Jijun Yan ◽  
Jinfang Chu ◽  
...  

Abstract The plant hormone ethylene is important for the ripening of climacteric fruit, such as pear (Pyrus ussuriensis), and the brassinosteroid (BR) class of phytohormones affects ethylene biosynthesis during ripening via an unknown molecular mechanism. Here, we observed that exogenous BR treatment suppressed ethylene production and delayed fruit ripening, whereas treatment with a BR biosynthesis inhibitor promoted ethylene production and accelerated fruit ripening in pear, suggesting BR is a ripening suppressor. The expression of the transcription factor BRASSINAZOLE-RESISTANT 1PuBZR1 was enhanced by BR treatment during pear fruit ripening. PuBZR1 interacted with PuACO1, which converts 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene, and suppressed its activity. BR-activated PuBZR1 bound to the promoters of PuACO1 and of PuACS1a, which encodes ACC synthase, and directly suppressed their transcription. Moreover, PuBZR1 suppressed the expression of transcription factor PuERF2 by binding its promoter, and PuERF2 bound to the promoters of PuACO1 and PuACS1a. We concluded that PuBZR1 indirectly suppresses the transcription of PuACO1 and PuACS1a through its regulation of PuERF2. Ethylene production and expression profiles of corresponding apple (Malus domestica) homologs showed similar changes following epibrassinolide treatment. Together, these results suggest that BR-activated BZR1 suppresses ACO1 activity and the expression of ACO1 and ACS1, thereby reducing ethylene production and suppressing fruit ripening. This likely represents a conserved mechanism by which BR suppresses ethylene biosynthesis during climacteric fruit ripening.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Lara Pereira ◽  
Miguel Santo Domingo ◽  
Valentino Ruggieri ◽  
Jason Argyris ◽  
Michael A. Phillips ◽  
...  

Abstract Melon is as an alternative model to understand fruit ripening due to the coexistence of climacteric and non-climacteric varieties within the same species, allowing the study of the processes that regulate this complex trait with genetic approaches. We phenotyped a population of recombinant inbred lines (RILs), obtained by crossing a climacteric (Védrantais, cantalupensis type) and a non-climcteric variety (Piel de Sapo T111, inodorus type), for traits related to climacteric maturation and ethylene production. Individuals in the RIL population exhibited various combinations of phenotypes that differed in the amount of ethylene produced, the early onset of ethylene production, and other phenotypes associated with ripening. We characterized a major QTL on chromosome 8, ETHQV8.1, which is sufficient to activate climacteric ripening, and other minor QTLs that may modulate the climacteric response. The ETHQV8.1 allele was validated by using two reciprocal introgression line populations generated by crossing Védrantais and Piel de Sapo and analyzing the ETHQV8.1 region in each of the genetic backgrounds. A Genome-wide association study (GWAS) using 211 accessions of the ssp. melo further identified two regions on chromosome 8 associated with the production of aromas, one of these regions overlapping with the 154.1 kb interval containing ETHQV8.1. The ETHQV8.1 region contains several candidate genes that may be related to fruit ripening. This work sheds light into the regulation mechanisms of a complex trait such as fruit ripening.


1999 ◽  
Vol 5 (3) ◽  
pp. 223-228 ◽  
Author(s):  
C. Larrigaudiere ◽  
I. Recasens ◽  
J. Graell ◽  
M. Vendrell

Changes in 1-aminocyclopropane-1-carboxylic acid metabolism in apples ( Malus domestica Borkh cv Granny Smith) were studied in relation to cold storage. Emphasis was given to the differential re sponsiveness of fruits to cold treatment as a function of stage of maturity at harvest. Fruits were held at 1 or 20 °C for 30 days, respectively, or exposed to 1 °C for 10 days and then storaged at 20 °C for up to 30 days. Fruits at 20 °C showed typical climacteric behavior. Differences at 1 °C between maturity stages in ethylene production and ACC oxidase activity were abolished, which showed that cold treatment is an important inducer of climacteric rise in preclimacteric Granny Smith apples. At 1 °C, ethylene production was lower than at 20 °C and the maxima in production were similar for all the stages of maturity, but took place at different times which corresponded exactly to the initial differ ences in harvest dates. After the transfer to 20 °C, fruits exhibited similar behavior as regards ethyl ene production, ACC oxidase activity, and ACC and MACC levels in relation to a harmonization process which is discussed in this study.


2001 ◽  
Vol 28 (5) ◽  
pp. 409 ◽  
Author(s):  
Saichol Ketsa ◽  
Kanokporn Bunya-atichart ◽  
Wouter G. van Doorn

Dendrobium ‘Pompadour’ flowers fade early following pollination. This is associated with increased ethylene production and early epinasty. These effects are also produced by application of 1-aminocyclopropane-1-carboxylic acid (ACC) on the stigma. Pollen (one anther each) from Ruellia tuberosa L. (Acanthaceae) and Caesalpinia pulcherrima (L.) Sw. (Fabaceae) also increased ethylene production and caused early epinasty and fading. Pollen of Hibiscus schizopetalus (Mast.) Hook.f. (Malvaceae), in contrast, had no effect. R. tuberosa pollen increased ACC concentration and ACC synthase activity of the orchid flowers. Aminooxyacetic acid (AOA) pretreatment prior to R. tuberosa pollination prevented early fading, epinasty and the increase in ethylene production. It also prevented the increase in ACC concentration, and ACC synthase activity. Ovary growth was stimulated by Dendrobium ‘Pompadour’ pollinia, not by any of the incompatible pollen. Applied ACC did not promote ovary growth. It is concluded that incompatible pollen can hasten senescence and epinasty by increasing ACC synthase activity and ethylene production. Ovary growth, in contrast, is apparently not primarily regulated by ethylene.


2008 ◽  
Vol 54 (No. 2) ◽  
pp. 55-60 ◽  
Author(s):  
H. Fišerová ◽  
Z. Mikušová ◽  
M. Klemš

The paper deals with problems associated with preparation and collection of samples when estimating the production of ethylene and content of ACC (1-aminocyclopropane-1-carboxylic acid) in plants by means of gas chromatography. A proper method of sampling can significantly influence not only the reliability of obtained data but also their interpretation. Attention was paid to cultivation of plant material, sampling vessels, conditions of ethylene production, sampling procedure, and storage of gaseous samples. The estimation of ACC as a precursor of ethylene is more laborious but it supplements the information about the endogenous level of ethylene in a given part of the plant organism. The authors describe the sampling procedure, methods of sample preservation, extraction and purification, and also the method of oxidation of ACC to ethylene. In the final part of this study the authors evaluate the time consumption and difficulty of individual methods and describe their advantages and disadvantages as compared with other, alternative methods.


Sign in / Sign up

Export Citation Format

Share Document