scholarly journals Operating Theatre Ventilation Systems and Their Performance in Contamination Control: “At Rest” and “In Operation” Particle and Microbial Measurements Made in an Italian Large and Multi-Year Inspection Campaign

Francesco Romano ◽  
Samanta Milani ◽  
Roberto Ricci ◽  
Cesare Maria Joppolo

In Operating Theatres (OT), the ventilation system plays an important role in controlling airborne contamination and reducing the risks of Surgical Site Infections (SSIs). The air cleanliness is really crucial in this field and different measurements are used in order to characterize the situation in terms of both airborne microbiological pollutants and particle size and concentration. Although the ventilation systems and airborne contamination are strictly linked, different air diffusion schemes (in particular, the Partial Unidirectional Airflow, P-UDAF, and the Mixing Airflow, MAF) and various design parameters are used, and there is still no consensus on real performance and optimum solutions. This study presents measurements procedures and results obtained during Inspection and Periodic Performance Testing (1228 observations) in a large sample of Italian OTs (175 OTs in 31 Italian hospitals) in their operative life (period from 2010 to 2018). The inspections were made after a cleaning procedure, both in “at-rest” conditions and “in operation” state. Inert and microbial contamination data (in air and on surfaces) are analyzed and commented according to four relevant air diffusion schemes and design classes. Related data on Recovery Time (RT) and personnel presence were picked up and are commented. The results confirm that the ventilation systems are able to maintain the targeted performance levels in the OT operative life. However, they attest that significant differences in real OT contamination control capabilities do exist and could be ascribed to various design choices and to different operation and maintenance practices. The study shows and confirms that the air diffusion scheme and the design airflow rate are critical factors. Beside large variations in measurements, the performance values, in terms of control of airborne particle and microbial contamination (in air and on surfaces), for P-UDAF systems are better than those that were assessed for the MAF air diffusion solution. The average performances do increase with increasing airflows, and the results offer a better insight on this relationship leading to some possible optimization.

Francesco Romano ◽  
Samanta Milani ◽  
Jan Gustén ◽  
Cesare Maria Joppolo

Air cleanliness is a crucial factor in operating theatres (OTs), where the health of patients and staff must be preserved by controlling air contamination. Particular attention must be paid to ultrafine particles (UFPs) size range, generated for instance by electrosurgical instruments (ESTs). OT contamination is also affected by ventilation systems, medical staff and their gowning system, staff routines, instruments, etc. This comparative study is based on experimental measurements of airborne microbial contamination and UFPs carried out during real ongoing surgeries in two OTs equipped with upward displacement ventilation (UWD) and hybrid ventilation, with unidirectional airflow on the operating table and peripheral mixing (UDAF+Mixing) ventilation systems. Airborne contamination concentration at the exit grilles has been analyzed as function of four different surgical phases normally performed during an operation. Results highlight that airborne contamination is influenced by the activities carried out during the surgical phases. EST usage affects the contamination level more than staff size during operation observed. Colony forming unit (CFU) values in the protected area close to the patient’s wound are influenced more by the type of ventilation system than by surgical phases. CFU values decrease by 18 to 50 times from the UWD system to the hybrid one. The large airflow volumes supply together with high air velocities in OTs equipped with UDAF+Mixing systems guarantee a better and a safer airborne contamination control for patients and medical team in comparison with UWD systems.

2016 ◽  
Vol 2 (1) ◽  
pp. 333-335
Sebastian Buhl ◽  
Nicole Eschenbecher ◽  
Sabine Hentschel ◽  
Clemens Bulitta

AbstractThe issue of surgical site infections has become more critical during the last years. The number of airborne microbes depends on the number released by the staff in the room or supplied from neighbouring rooms. In order to minimize the risk of nosocomial infections during surgical procedures technical developments like ventilation systems were introduced in the operating room (OR). In this study several factors like clothing and types of ventilation systems have been investigated and their impact on the effectiveness for reducing microbial burden in the OR has been assessed. In case of OR-gowns we found a benefit for a disposable Swedish clothing concept regarding microbiological contamination in comparison with the German standard multiuse clothing. Moreover our study shows that there is comparable effectiveness of a fairly novel temperature controlled airflow ventilation system (TAF) compared to standard low turbulent uni-directional airflow (TAV).

2020 ◽  
Vol 38 (9A) ◽  
pp. 1257-1275
Wisam M. Mareed ◽  
Hasanen M. Hussen

 Elevated CO2 rates in a building affect the health of the occupant. This paper deals with an experimental and numerical analysis conducted in a full-scale test room located in the Department of Mechanical Engineering at the University of Technology. The experiments and CFD were conducted for analyzing ventilation performance. It is a study on the effect of the discharge airflow rate of the ceiling type air-conditioner on ventilation performance in the lecture room with the mixing ventilation. Most obtained findings show that database and questionnaires analyzed prefer heights between 0.2 m to 1.2 m in the middle of an occupied zone and breathing zone height of between 0.75 m to 1.8 given in the literature surveyed. It is noticed the mismatch of internal conditions with thermal comfort, and indoor air quality recommended by [ASHRAE Standard 62, ANSI / ASHRAE Standard 55-2010]. CFD simulations have been carried to provide insights on the indoor air quality and comfort conditions throughout the classroom. Particle concentrations, thermal conditions, and modified ventilation system solutions are reported.

Tshokey Tshokey ◽  
Pranitha Somaratne ◽  
Suneth Agampodi

Air contamination in the operating room (OR) is an important contributor for surgical site infections. Air quality should be assessed during microbiological commissioning of new ORs and as required thereafter. Despite many modern methods of sampling air, developing countries mostly depended on conventional methods. This was studied in two ORs of the National Hospital of Sri Lanka (NHSL) with different ventilation system; a conventional ventilation (CV) and a laminar air flow (LAF). Both ORs were sampled simultaneously by two different methods, the settle plate and sampler when empty and during use for a defined time period. Laboratory work was done in the Medical Research Institute. The two methods of sampling showed moderate but highly significant correlation. The OR with CV was significantly more contaminated than LAF when empty as well as during use by both methods. Overall, the difference in contamination was more significant when sampled by the sampler. Differences in contamination in empty and in-use ORs were significant in both ORs, but significance is less in LAF rooms. The consistent and significant correlation between settle plate and sampler showed that the settle plate is an acceptable method. The LAF theatre showed less contamination while empty and during use as expected. Air contamination differences were more significant when sampled with sampler indicating that it is a more sensitive method. Both CV and LAF ORs of the NHSL did not meet the contamination standards for empty theatres but met the standards for in-use indicating that the theatre etiquette was acceptable.

2011 ◽  
Vol 40 (6) ◽  
pp. 1372-1380
Valéria Maria Nascimento Abreu ◽  
Doralice Pedroso de Paiva ◽  
Paulo Giovanni de Abreu ◽  
Arlei Coldebella

It was evaluated the quality of rice husks or soybean straw as litter substrate and the effect of litter reuse for four consecutive flocks of broiler chickens on populations of darkling beetle and intestinal parasite and as organic fertilizer. The experiment was carried out in four 12 m × 10 m poultry houses, internally divided in 4 boxes/poultry house with 200 birds/pen for four consecutive flocks, each flock with a duration of 42 days and with a 15-day downtime between flocks. The evaluated treatments were two ventilation systems (stationary or oscillating fans) and two litter materials (soybean straw or rice husks). Darkling beetle population was followed by collecting the insects in traps, three traps per box, and endoparasite litter contamination was determined by eggs/oocyst counts per gram of litter. Levels of dry matter, total nitrogen, total phosphorus, potassium, copper, zinc, manganese, iron, organic carbon and pH were evaluated by physical/chemical analyses of samples of the litters in each flock. Overall, litters of broilers used by three flocks meet the minimal legal requirements to be marketed as simple organic fertilizer, regardless to the material used as substrate. Soybean straw presented higher darkling beetle counts in stationary ventilation system as well as in oscillating ventilation system. The probability of rice husks litter present contamination by Eimeria spp oocysts is 18.78 times higher in rice husks than in soybean straw litter when both are submitted to oscillating ventilation, and 1.32 higher when stationary ventilation is used. Litter temperature does not influence significantly levels of contamination by oocysts.

2018 ◽  
Vol 875 ◽  
pp. 137-140 ◽  
Valery N. Azarov ◽  
Natalia M. Sergina ◽  
I.V. Stefanenko

It was proposed to use air flow screw straightened units in outlet pipe of the dust collectors to reduce the aerodynamic resistance of exhaust ventilation systems. It is allowed to decrease power consumption for their maintenance operation consequently. The article describes the results of experimental studies to evaluate its effectiveness by applying the tangential screw straightened unit within ventilation system. The obtained results showed that the use of this device allows reducing the aerodynamic resistance of the cyclone by 14.6%, and for counter-swirling flows’ dust collector (CSFC) by 17.2-23.6%. It was found that meanings of the aerodynamic resistance depend on value the share proportion of the flow entering into lower CSFC apparatus’ input.

Solar Energy ◽  
2005 ◽  
D. Dong ◽  
M. Liu

Investigations of a desiccant dehumidifier system have been performed for humidity control application in confined spaces. A previous study revealed that the base dehumidifier system can reduce moisture condensation by 22% over a conventional exhaust ventilation system. The current study aims to develop improved design requirements for a desiccant dehumidifier. The energy consumption of an exhaust ventilation system and an improved dehumidifier system was compared. To investigate the improved desiccant dehumidification system, numerical simulations were conducted and an objective function was established. This paper presents simulated results for an existing desiccant dehumidification system and an improved system, in which improved parameters are used. Use of the improved design parameters can reduce moisture condensation by 26.6% over a base dehumidifier system and shorten the dehumidifier performance period by 14%. Energy consumption with the sole use of an exhaust system is compared with that of the improved dehumidifier system under the same conditions. The results show that energy consumption can be substantially reduced, by 63%, in the improved dehumidifier system with the same amount of moisture condensation on surfaces of the confined space.

Sign in / Sign up

Export Citation Format

Share Document