scholarly journals Quantification of Sound Exposure from Wind Turbines in France

Author(s):  
David Ecotière ◽  
Patrick Demizieux ◽  
Gwenaël Guillaume ◽  
Lise Giorgis-Allemand ◽  
Anne-Sophie Evrard

The WHO guidelines on environmental noise highlight that evidence on the health effects of wind turbine sound levels is either non-existent or of poor quality. In this context, a feasibility study was conducted in France in 2017. The objective was to suggest a methodology for calculating wind turbine sound levels in order to quantify the number of windfarms’ residents exposed to this sound. Based on a literature review, the Harmonoise model was selected for sound exposure calculation. It was validated by quantifying its uncertainties, and finally used to estimate the population exposed to wind turbine sound in metropolitan France. Compared to other environmental noise sources (e.g., transportation), sound exposure is very moderate, with more than 80% of the exposed people exposed to sound levels below 40 dBA. The total number of people exposed to more than 30 dBA is about 686,000 and 722,000 people for typical daytime and night-time meteorological conditions respectively, i.e., about 1% of the French population in 2017. These results represent the first ever assessment of sound exposure from wind turbines at the scale of the entire metropolitan France.

2013 ◽  
Vol 471 ◽  
pp. 125-129
Author(s):  
N.V. David ◽  
K. Ismail

Excessive environmental noise and poor air quality can be adverse to human health, living comfort and the environment itself. Measurement of sound pressure levels and air quality in critical areas including libraries, campus areas, public parks and hospitals thus becomes necessary to monitor and mitigate existing noise levels. In a university environment, student activities will be less disrupted if the locations of the activities are sufficiently away from noise sources. The present study is intended to measure sound levels and air quality around the Engineering Complex, Universiti Teknologi Mara, Shah Alam. The measured data is compared with to acceptable sound pressure levels and air quality index specified by the Department of Environment (DOE), Malaysia. Sound pressure levels are measured using the Castle Sound Level Meter Type 6224 and air quality measurement was done by using the BW Gas Alert MicroClip XT device. Both measurements were conducted at five selected stations around the Engineering Complex for three times each weekday for five weeks. Results obtained indicated that sound levels at some locations and time zones are above the thresholds recommended by the DOE. The air quality is acceptable in most locations except the vicinity of a bus stop. With the growing number of students in the university and other factors like construction and redevelopment of existing roads, a continuously increasing noise situations and air pollution proportional to the traffic flow is inevitable.


2021 ◽  
pp. 16-17
Author(s):  
Dilip Kumar ◽  
V Shankar Vengalapudi ◽  
Maneesha Panduranga Halkar ◽  
Ranjan Kumar Pejaver

Introduction: The American Academy of Pediatrics (AAP) and the Joint Committee on Infant Hearing (JCIH) have introduced noise as a major physical factor causing pollution in NICUs. The American Academy of Paediatrics recommends that sound levels be lower than 45 dBA in the NICU. They thus suggested that the admittance of infants to these wards might be associated with deafness This project included conducting sound surveys of naturall Methodology: y occurring noise in the NICU environments. There was no direct neonate involvement. Each part has two sections A and B, the section A is from more sick babies requiring Level 3 NICU care, whereas the section B is for babies requiring Level 2 NICU care. The mean num Results: bers of staff present in NICU during Day and Night time is 9 and 6 respectively. For all the infants in section A and section B, monitors were used, infusion pumps were used for all babies in section A and as required in section B. Average ventilated babies/day was 1. Conclusion: The sound levels measured in NICU environment and inside incubator in section A and section B, the results show there is no signicant difference the level of sound exposure to the babies in each section.


Noise Mapping ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 236-248
Author(s):  
Huey Ting Diong ◽  
Richard Neitzel ◽  
William Hal Martin

Abstract Existing studies in Singapore on environmental noise are scarce and limited in scale due to the need for expensive equipment and sophisticated modelling expertise. This study presents the approach of using participatory sensing and mobile phones to monitor environmental sound levels around Singapore. iPhones running the AmbiCiti application was adopted to sample equivalent continuous 30-second average outdoor sound levels (LAeq ,30 sec). The aggregated mean of each region was evaluated and the spatial distribution of environmental noise was analysed using noise maps generated from the measurement data. A total of 18,768 LAeq ,30 sec measurements were collected over ten weeks. About 93.6% of the daytime measurements (07:00 – 19:00) exceeded the WHO recommended level of 55 dBA to minimise negative non-auditory health effects due to noise. The results of this study suggest that the population of Singapore is potentially at risk of adverse non-auditory health effects and, to a lesser extent, hearing loss due to community noise levels. However, the measurements exceeding 70 dBA were frequent enough to warrant concern about contributions to the cumulative lifetime sound exposure contributing to hearing loss. The work also demonstrates that sound maps of an area can be efficiently generated using calibrated applications running on smart phones.


Author(s):  
B. P. Khozyainov

The article carries out the experimental and analytical studies of three-blade wind power installation and gives the technique for measurements of angular rate of wind turbine rotation depending on the wind speeds, the rotating moment and its power. We have made the comparison of the calculation results according to the formulas offered with the indicators of the wind turbine tests executed in natural conditions. The tests were carried out at wind speeds from 0.709 m/s to 6.427 m/s. The wind power efficiency (WPE) for ideal traditional installation is known to be 0.45. According to the analytical calculations, wind power efficiency of the wind turbine with 3-bladed and 6 wind guide screens at wind speedsfrom 0.709 to 6.427 is equal to 0.317, and in the range of speed from 0.709 to 4.5 m/s – 0.351, but the experimental coefficient is much higher. The analysis of WPE variations shows that the work with the wind guide screens at insignificant average air flow velocity during the set period of time appears to be more effective, than the work without them. If the air flow velocity increases, the wind power efficiency gradually decreases. Such a good fit between experimental data and analytical calculations is confirmed by comparison of F-test design criterion with its tabular values. In the design of wind turbines, it allows determining the wind turbine power, setting the geometrical parameters and mass of all details for their efficient performance.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 982 ◽  
Author(s):  
Xin Wu ◽  
Hong Wang ◽  
Guoqian Jiang ◽  
Ping Xie ◽  
Xiaoli Li

Health monitoring of wind turbine gearboxes has gained considerable attention as wind turbines become larger in size and move to more inaccessible locations. To improve the reliability, extend the lifetime of the turbines, and reduce the operation and maintenance cost caused by the gearbox faults, data-driven condition motoring techniques have been widely investigated, where various sensor monitoring data (such as power, temperature, and pressure, etc.) have been modeled and analyzed. However, wind turbines often work in complex and dynamic operating conditions, such as variable speeds and loads, thus the traditional static monitoring method relying on a certain fixed threshold will lead to unsatisfactory monitoring performance, typically high false alarms and missed detections. To address this issue, this paper proposes a reliable monitoring model for wind turbine gearboxes based on echo state network (ESN) modeling and the dynamic threshold scheme, with a focus on supervisory control and data acquisition (SCADA) vibration data. The aim of the proposed approach is to build the turbine normal behavior model only using normal SCADA vibration data, and then to analyze the unseen SCADA vibration data to detect potential faults based on the model residual evaluation and the dynamic threshold setting. To better capture temporal information inherent in monitored sensor data, the echo state network (ESN) is used to model the complex vibration data due to its simple and fast training ability and powerful learning capability. Additionally, a dynamic threshold monitoring scheme with a sliding window technique is designed to determine dynamic control limits to address the issue of the low detection accuracy and poor adaptability caused by the traditional static monitoring methods. The effectiveness of the proposed monitoring method is verified using the collected SCADA vibration data from a wind farm located at Inner Mongolia in China. The results demonstrated that the proposed method can achieve improved detection accuracy and reliability compared with the traditional static threshold monitoring method.


2021 ◽  
Vol 11 (2) ◽  
pp. 574
Author(s):  
Rundong Yan ◽  
Sarah Dunnett

In order to improve the operation and maintenance (O&M) of offshore wind turbines, a new Petri net (PN)-based offshore wind turbine maintenance model is developed in this paper to simulate the O&M activities in an offshore wind farm. With the aid of the PN model developed, three new potential wind turbine maintenance strategies are studied. They are (1) carrying out periodic maintenance of the wind turbine components at different frequencies according to their specific reliability features; (2) conducting a full inspection of the entire wind turbine system following a major repair; and (3) equipping the wind turbine with a condition monitoring system (CMS) that has powerful fault detection capability. From the research results, it is found that periodic maintenance is essential, but in order to ensure that the turbine is operated economically, this maintenance needs to be carried out at an optimal frequency. Conducting a full inspection of the entire wind turbine system following a major repair enables efficient utilisation of the maintenance resources. If periodic maintenance is performed infrequently, this measure leads to less unexpected shutdowns, lower downtime, and lower maintenance costs. It has been shown that to install the wind turbine with a CMS is helpful to relieve the burden of periodic maintenance. Moreover, the higher the quality of the CMS, the more the downtime and maintenance costs can be reduced. However, the cost of the CMS needs to be considered, as a high cost may make the operation of the offshore wind turbine uneconomical.


Author(s):  
Marcus Wiens ◽  
Sebastian Frahm ◽  
Philipp Thomas ◽  
Shoaib Kahn

AbstractRequirements for the design of wind turbines advance facing the challenges of a high content of renewable energy sources in the public grid. A high percentage of renewable energy weaken the grid and grid faults become more likely, which add additional loads on the wind turbine. Load calculations with aero-elastic models are standard for the design of wind turbines. Components of the electric system are usually roughly modeled in aero-elastic models and therefore the effect of detailed electrical models on the load calculations is unclear. A holistic wind turbine model is obtained, by combining an aero-elastic model and detailed electrical model into one co-simulation. The holistic model, representing a DFIG turbine is compared to a standard aero-elastic model for load calculations. It is shown that a detailed modelling of the electrical components e.g., generator, converter, and grid, have an influence on the results of load calculations. An analysis of low-voltage-ride-trough events during turbulent wind shows massive increase of loads on the drive train and effects the tower loads. Furthermore, the presented holistic model could be used to investigate different control approaches on the wind turbine dynamics and loads. This approach is applicable to the modelling of a holistic wind park to investigate interaction on the electrical level and simultaneously evaluate the loads on the wind turbine.


Author(s):  
U. Nopp-Mayr ◽  
F. Kunz ◽  
F. Suppan ◽  
E. Schöll ◽  
J. Coppes

AbstractIncreasing numbers of wind power plants (WPP) are constructed across the globe to reduce the anthropogenic contribution to global warming. There are, however, concerns on the effects of WPP on human health as well as related effects on wildlife. To address potential effects of WPP in environmental impact assessments, existing models accounting for shadow flickering and noise are widely applied. However, a standardized, yet simple and widely applicable proxy for the visibility of rotating wind turbines in woodland areas was largely lacking up to date. We combined land cover information of forest canopy extracted from orthophotos and airborne laser scanning (LiDAR) data to represent the visibility of rotating wind turbines in five woodland study sites with a high spatial resolution. Performing an in-situ validation in five study areas across Europe which resulted in a unique sample of 1738 independent field observations, we show that our approach adequately predicts from where rotating wind turbine blades are visible within woodlands or not. We thus provide strong evidence, that our approach yields a valuable proxy of the visibility of moving rotor blades with high resolution which in turn can be applied in environmental impact assessments of WPP within woodlands worldwide.


2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Jiawen Li ◽  
Jingyu Bian ◽  
Yuxiang Ma ◽  
Yichen Jiang

A typhoon is a restrictive factor in the development of floating wind power in China. However, the influences of multistage typhoon wind and waves on offshore wind turbines have not yet been studied. Based on Typhoon Mangkhut, in this study, the characteristics of the motion response and structural loads of an offshore wind turbine are investigated during the travel process. For this purpose, a framework is established and verified for investigating the typhoon-induced effects of offshore wind turbines, including a multistage typhoon wave field and a coupled dynamic model of offshore wind turbines. On this basis, the motion response and structural loads of different stages are calculated and analyzed systematically. The results show that the maximum response does not exactly correspond to the maximum wave or wind stage. Considering only the maximum wave height or wind speed may underestimate the motion response during the traveling process of the typhoon, which has problems in guiding the anti-typhoon design of offshore wind turbines. In addition, the coupling motion between the floating foundation and turbine should be considered in the safety evaluation of the floating offshore wind turbine under typhoon conditions.


Sign in / Sign up

Export Citation Format

Share Document