scholarly journals Changes in Reconstructed Soil Physicochemical Properties in an Opencast Mine Dump in the Loess Plateau Area of China

Author(s):  
Yuting Li ◽  
Wenxiang Zhou ◽  
Ming Jing ◽  
Shufei Wang ◽  
Yuhan Huang ◽  
...  

Soil construction and revegetation are essential for ecological restoration in mining areas. The influence of vegetation on the horizontal and vertical distribution patterns of soil properties should be fully understood. However, most studies on reconstructed soils in mining areas only concentrate on the surface soil, without exploring the vertical variations in soil properties. Overall, this study aims to explore the potential mechanisms by which surface vegetation exerts some influence on the spatial distribution of soil physicochemical properties, and to provide some insight into revegetation and soil reclamation in mining areas. Descriptive statistics and one-way analysis of variance (one-way ANOVA) were employed to evaluate the differences in the soil physicochemical properties in horizontal and vertical directions under different land-use types in the south dump of Antaibao opencast mine in Pingshuo, Shanxi Province, China. The main results of this study are as follows: (1) In the horizontal direction, except for the strong variation (variation coefficient ≥ 100%) in soil organic matter (SOM) content at some depths, the degree of variation in other soil physicochemical properties at various depths was moderate or weak (variation coefficient < 100%). The soil physicochemical properties gradually remained constant after years of reclamation. In the vertical direction, the soil bulk density (SBD), soil porosity, SOM content, soil C/N ratio, soil total nitrogen (STN) content, soil available phosphorus (SAP) content, and soil available potassium (SAK) content showed significant variations (p < 0.05) between soil depths. In contrast, no significant difference was found for other physicochemical properties. (2) The SBD, STN, SAK, soil porosity, and soil clay content were significantly different (p < 0.05) under different vegetation cover types, but the influence of vegetation on other soil physicochemical properties seemed to be limited. The results reveal that trees have a stronger ability to reduce soil grain sizes and enhance SAP contents than shrubs or herbs; however, the beneficial effects of herbs on the physicochemical properties of shallow soil are more obvious than those of trees and shrubs. (3) This study indicates that more shrubs and trees should be planted in the areas with low vegetation coverage, and more measures should be taken to improve soil physicochemical properties in order to prevent the occurrence of large-scale degradation. The reconstruction of soil structure should be preferentially considered in the process of soil reconstruction and revegetation in areas under similar conditions. Herbs should first be planted in the early reclamation stage. At the same time, shrubs or trees can be adopted in the middle and late stages of vegetation reconstruction in order to achieve comprehensive revegetation.

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Melissa A. Magno ◽  
Arpita Nandi ◽  
Ingrid E. Luffman

Mining processes generate waste rock, tailings, and slag that can increase potentially toxic metal (PTM) concentrations in soils. Un-reclaimed, abandoned mine sites are particularly prone to leaching these contaminants, which may accumulate and pose significant environmental and public health concerns. The characterization and spatial delineation of PTMs in soils is vital for risk assessment and soil reclamation. Bumpus Cove, a once active mining district of eastern Tennessee, is home to at least 47 abandoned, un-reclaimed mines, all permanently closed by the 1950s. This study evaluated soil physicochemical properties, determined the spatial extent of PTMs (Zn, Mn, Cu, Pb, and Cd), and examined the influence of soil properties on PTM distribution in Bumpus Cove, TN. Soil samples (n = 52) were collected from a 0.67 km2 study area containing 6 known abandoned Pb, Zn, and Mn mines at the headwaters of Bumpus Cove Creek. Samples were analyzed for Zn, Mn, Cu, Pb, and Cd by microwave-assisted acid digestion and flame atomic absorption spectrometry (FAAS) (12–1,354 mg/kg Zn, 6–2,574 mg/kg Mn, 1–65 mg/kg Cu, 33–2,271 mg/kg Pb, and 7–40 mg/kg Cd). Of the measured PTMs, only Pb exceeds permissible limits in soils. In addition to the PTM analyses, soil physical (texture, moisture content, and bulk density) and chemical (pH, cation exchange capacity (CEC), and total organic carbon (TOC)) properties were evaluated. Spatially weighted multivariate regression models developed for all PTMs using soil physicochemical properties produced improved results over ordinary least squares (OLS) regression models. Models for Zn (R2 = 0.71) and Pb (R2 = 0.69) retained covariates epH, moisture content, and CEC (Zn), and pH and CEC (Pb). This study will help define PTM concentration and transport and provide a reference for state and local entities responsible for contaminant monitoring in Bumpus Cove, TN.


2021 ◽  
Vol 10 (1) ◽  
pp. 3492-3500
Author(s):  
Vipin Y. Borole ◽  
◽  
Sonali B. Kulkarni ◽  

Soil properties may be varied by spatially and temporally with different agricultural practices. An accurate and reliable soil properties assessment is challenging issue in soil analysis. The soil properties assessment is very important for understanding the soil properties, nutrient management, influence of fertilizers and relation between soil properties which are affecting the plant growth. Conventional laboratory methods used to analyses soil properties are generally impractical because they are time-consuming, expensive and sometimes imprecise. On other hand, Visible and infrared spectroscopy can effectively characterize soil. Spectroscopic measurements are rapid, precise and inexpensive. Soil spectroscopy has shown to be a fast, cost-effective, environmentally friendly, non-destructive, reproducible and repeatable analytical technique. In the present research, we use spectroscopy techniques for soil properties analysis. The spectra of agglomerated farming soils were acquired by the ASD Field spec 4 spectroradiometer. Different fertilizers treatment applied soil samples are collected in pre monsoon and post monsoon season for 2 year (4 season) for banana and cotton crops in the form of DS-I and DS-II respectively. The soil spectra of VNIR region were preprocessed to get pure spectra. Then process the acquired spectral data by statistical methods for quantitative analysis of soil properties. The detected soil properties were carbon, Nitrogen, soil organic matter, pH, phosphorus, potassium, moisture sand, silt and clay. Soil pH is most important chemical properties that describe the relative acidity or alkalinity of the soil. It directly effect on plant growth and other soil properties. The relationship between pH properties on soil physical and chemical parameters and their influence were analyses by using linear regression model and show the performance of regression model with R2 and RMSE. Keywords soil; physicochemical properties; spectroscopy; pH


2016 ◽  
Vol 82 (24) ◽  
pp. 7086-7092 ◽  
Author(s):  
Viriya Hantrakun ◽  
Patpong Rongkard ◽  
Malinee Oyuchua ◽  
Premjit Amornchai ◽  
Cherry Lim ◽  
...  

ABSTRACTBurkholderia pseudomalleiis a soil-dwelling bacterium and the cause of melioidosis, which kills an estimated 89,000 people per year worldwide. Agricultural workers are at high risk of infection due to repeated exposure to the bacterium. Little is known about the soil physicochemical properties associated with the presence or absence of the organism. Here, we evaluated the soil physicochemical properties and presence ofB. pseudomalleiin 6,100 soil samples collected from 61 rice fields in Thailand. The presence ofB. pseudomalleiwas negatively associated with the proportion of clay, proportion of moisture, level of salinity, percentage of organic matter, presence of cadmium, and nutrient levels (phosphorus, potassium, calcium, magnesium, and iron). The presence ofB. pseudomalleiwas not associated with the level of soil acidity (P= 0.54). In a multivariable logistic regression model, the presence ofB. pseudomalleiwas negatively associated with the percentage of organic matter (odds ratio [OR], 0.06; 95% confidence interval [CI], 0.01 to 0.47;P= 0.007), level of salinity (OR, 0.06; 95% CI, 0.01 to 0.74;P= 0.03), and percentage of soil moisture (OR, 0.81; 95% CI, 0.66 to 1.00;P= 0.05). Our study suggests thatB. pseudomalleithrives in rice fields that are nutrient depleted. Some agricultural practices result in a decline in soil nutrients, which may impact the presence and amount ofB. pseudomalleibacteria in affected areas.IMPORTANCEBurkholderia pseudomalleiis an environmental Gram-negative bacillus and the cause of melioidosis. Humans acquire the disease following skin inoculation, inhalation, or ingestion of the bacterium in the environment. The presence ofB. pseudomalleiin soil defines geographic regions where humans and livestock are at risk of melioidosis, yet little is known about the soil properties associated with the presence of the organism. We evaluated the soil properties and presence ofB. pseudomalleiin 61 rice fields in East, Central, and Northeast Thailand. We demonstrated that the organism was more commonly found in soils with lower levels of organic matter and nutrients, including phosphorus, potassium, calcium, magnesium, and iron. We also demonstrated that crop residue burning after harvest, which can reduce soil nutrients, was not uncommon. Some agricultural practices result in a decline in soil nutrients, which may impact the presence and amount ofB. pseudomalleibacteria in affected areas.


Author(s):  
A Alemayhu ◽  
G Yakob

Different studies have shown that the effect of eucalyptus trees on soil physicochemical properties is variable, which indicates that more investigations that focus on different specific geographical locations and eucalyptus tree species are required. The objectives of this study was to evaluate the status of soil nutrients under four eucalyptus tree species planted in hedgerow system in comparison with that in its adjacent open land. To achieve these objectives, soil samples were taken from a soil depth of 0-20 cm from 15-20 spots by using auger and composited for respective treatments. Each soil samples analyzed at Teppi soil laboratory following standard procedures. Analysis of variance (ANOVA) and treatments separation were made by using Least Significance Difference (LSD) at 95% probability level. The analysis result indicated that there were no significance differences between Eucalyptus tree species and its adjacent open land in the level of soil nutrients (total N, available P, pH, OM, soil moisture and OC) (p<0.05). The only significant difference recorded between Eucalyptus tree species and its adjacent open land in the level of sand percentage whereas non-significant difference was noticed between the treatments on the level of silt and clay percentage in the study. Finally, the results indicate that the eucalyptus tree species established in hedgerow system on clay soil in high rainfall area have no significant impact on soil physicochemical properties under short rotation period of the tree species. Int. J. Agril. Res. Innov. Tech. 10(2): 7-14, December 2020


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 954
Author(s):  
Saiyaremu Halifu ◽  
Xun Deng ◽  
Xiaoshuang Song ◽  
Yuning An ◽  
Ruiqing Song

Pinus sylvestris var. mongolica is an important tree species for ecological construction and environmental restoration owing to its rapid growth rate and excellent stress resistance. Pinus sylvestris var. mongolica sphaeropsis blight is a widespread disease caused by Sphaeropsis sapinea. This study was focused on non-infected (CK) and infected (SS) Pinus sylvestris var. mongolica plants in Zhanggutai area, Liaoning Province, China. Illumina high-throughput sequencing based on the templates of sequencing-by-synthesis working with reversible terminators is a widely used approach. In the present study, systematic differences in relationships among rhizosphere soil physicochemical properties, bacterial community structure, diverse bacterial genera, and alpha diversity indices between the two categories were evaluated. The current findings are as follows: (1) Shannon’s index of SS soil was significantly higher than CK, and it was significantly lower in May than July and September (p < 0.05). (2) Non-metric multidimensional scaling (NMDS) showed a difference in bacterial community structure during May (spring), July (summer), and September. (3) At the phylum level, no significant difference was found in the bacterial genera between CK and SS soil for three seasons; however, at the genus level, there were about 19 different bacterial genera. The correlation studies between 19 different bacterial genera and environmental factors and α-diversity indicated that bacterial genera of non-infected and infected Pinus sylvestris var. mongolica were distributed differently. The bacterial genera with CK were positively correlated with soil physicochemical properties, while a negative correlation was found for SS. In conclusion, the differences in nutrient and microbial community structure in the rhizosphere soil of Pinus sylvestris var. mongolica are the main causes of shoot blight disease.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Gebretsadik Melak Tamene ◽  
Hailu Kindie Adiss ◽  
Melese Yigzaw Alemu

Recent research findings imply that the slope aspect has a great impact on soil genesis and soil microclimate. The microclimate has a significant effect on the soil geobiochemical processes taking place in the soil. However, the slope aspect impact on soil properties has not been yet studied well in Ethiopia, particularly in the northern highlands. This research was initiated to link selected soil physicochemical properties with slope aspects under different land use practices. The research was conducted in Gumara-Maksegnit watershed located at the upper Lake Tana basin, Ethiopia. Four slope aspects, eastward (Ew), northward (Nw), southward (Sw), and westward (Ww), and three land use types at each slope aspect, cropland (Cl), forest land (Fl), and grazing land (Gl), were considered. In total, 36 undisturbed soil samples for bulk density and 36 disturbed soil samples for selected soil properties were collected. Soil particle size (texture), bulk density, electrical conductivity (EC), soil pH, available phosphorus (av. P), available potassium (av. K), total nitrogen (TN), and soil organic carbon (SOC) were analyzed. The resulting analyses showed no significant variation (p<0.05) across both slope aspects and/or land use types for soil pH and EC, whereas the slope aspect showed a significant effect (p<0.05) on SOC, TN, av. K, and av. P. The highest significant (p<0.05) mean value of SOC was observed in the Ww (3.04%) followed by Nw (2.52%) but SOC was not significant (p<0.05) between Sw and Ew. While the highest av. K (1233.2 centimole/kilogram) and av. phosphorus (35.76 ppm) were observed in Nw slope aspect, the highest TN was in the Ww slope aspect (0.24%). The significant effect (p<0.05) of land uses can be summarized as Fl > Gl > Cl for SOC and TN. A strong positive correlation was observed between SOC and TN (R2 = 0.997) and av. K and av. P (R2 = 0.58) at p<0.05. Generally, the slope aspect, land use types, and their interaction had a significant effect on soil physicochemical properties.


2020 ◽  
Vol 12 (21) ◽  
pp. 9226
Author(s):  
Runxia Zhang ◽  
Xueyong Zhao ◽  
Chencheng Zhang ◽  
Jing Li

Land use/land cover (LULC) change widely occurs during urbanization and can affect the functionality of soil ecosystems by altering soil physicochemical properties. However, few studies have evaluated the impacts of LULC change on soils in arid regions. This study investigates LULC change patterns during 2010–2017 in Lanzhou New Area, China based on remotely sensed data (Chinese GaoFen-1 and Advanced Land Observing Satellite). We identified five main land use change types and reference native grassland and farmland to determine soil properties at different depths. Principal component analysis and scatter matrix were employed to evaluate the effect of LULC change on soil properties. The results showed that LULC changes that occurred in Lanzhou New Area were characterized by the rapid growth of construction and bare land (increased by 13.06% and 5.97%, respectively) at the expense of farmland (decreased by 25.38%). The conversion of native grassland to artificial grassland and bare land, and farmland to bare land had similar effects on soil properties; i.e., a significant decline and a lower level in total nitrogen and soil organic carbon. The farmland to construction land transition deteriorated soil nutrients and increased soil compaction by both increasing bulk density (BD, mean = 1.63 g cm−3) and enhancing sand content by 69.21%. All land use change types increased BD and decreased soil water content and saturated soil water content when compared to the reference areas. These results indicate that changes in LULC have significant impacts on soil physicochemical properties. Thus, it is essential to optimize land planning and improve soil quality in arid ecosystems to ensure sustainable resource management and ecosystem conservation.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Belayneh Bufebo ◽  
Eyasu Elias ◽  
Getachew Agegnehu

Abstract Background Understanding the effects of landscape positions on soil physicochemical properties is crucial for improving the soil productivity and to ensure the environmental sustainability. Three land use types forest land, grazing land and cultivated land all within upper, middle and lower landscape positions were selected to determine the effects of landscape positions, land use types and their interaction effects on soil physicochemical properties. Twenty seven soil samples were collected from lower landscape, middle landscape and upper landscape positions at the depth of 0–20 cm in nine replications. In addition, undisturbed soil samples were taken using core sampler from each land use type under upper, middle and lower landscape positions for the ascertainment of bulk density and water retentive capacity. The analysis of variance (ANOVA) was applied to determine variations in soil parameters among landscape positions and land use types. A Generalized Linear Models (GLMs) analysis was conducted to determine the influence of independent (fixed) factors, on the soil properties (response variables). Treatment means comparison was determined using the Least Significant Difference (LSD) at 0.05 level of significances. Results The result indicated that among the soil properties sand (p < 0.001), silt (p < 0.001), clay (p < 0.001), bulk density (p < 0.01), water holding capacity at FC (p < 0.001), water retention at PWP (p < 0.01), Available water content (AWC) (p < 0.01), soil reaction (pH) (p < 0.05), Soil organic carbon (SOC%) (p < 0.01), Total nitrogen (TN%) (p < 0.01), available phosphorus (p < 0.05) and CEC (p < 0.001) have shown a significant variation among the landscape categories. Similarly, variation of sand (p < 0.001), silt (p < 0.001), clay (p < 0.001), bulk density (p < 0.01), water holding capacity at FC (p < 0.001), water retention at PWP (p < 0.001), Available water content (AWC) (p < 0.01), soil reaction (pH) (p < 0.01), SOC (p < 0.01), TN (p < 0.001) available phosphorus (AP) (p < 0.001) and CEC (p < 0.001) were also statistically significant among the land use types. Moreover, lower landscape position and forest land had high mean value of SOC, TN, AP, CEC, EB (exchangeable bases), and available micronutrients, whereas upper landscape position and intensively cultivated land had low mean value of SOC, TN, AP, CEC, EB (exchangeable bases), and available micronutrients. Conclusion Landscape positions, land use types and interaction effects of landscape position and land use types (LSP * LU) significantly affected soil properties. Soil with best quality was found in lower landscape position and forest land, while less quality of soil was found in upper landscape position and cultivated land. Thus, efforts should be made to improve the quality of soil under upper landscape position and cultivated land using biological and physical soil conservation measures.


Author(s):  
Mulatu Chernet Madolo ◽  
Yohannes Horamo More ◽  
Melese Gogo Masamo

Soil erosion is now almost universally recognized as a serious threat to man's well-being, if not his very existence. As a result, we assessed the soil physicochemical properties of two possible levels of soil bund and fanya juu. RCBD with three replications was used to collect soil samples from each soil conservation structure. Five composite soil samples were collected from each soil structure based on slop (0-30cm). Soil physicochemical properties such as erosion index, dispersion ratio, and erodibility proportionality ratio were investigated. The effect of different soil structure levels revealed that soil properties differed significantly (P&le;0.05) for all parameters studied. The control plots had significantly higher (P&le;0.05) dispersion ratio, erosion indexes, and erodibility proportionality than the soils treated by the level bund and level Fanya juu structures. On the control plot, this result showed lower clay content and higher sand content. The level of soil bund and fanya juu had a significant (P&le;0.05) effect on soil OC, CEC, OM, and TN, as well as available phosphorous and potassium. As a result, all related soil properties show a positive relative change when the level of soil bund and fanya juu is compared to the control plot. Aside from this result, the dynamic natures of the sciences compel us to conduct additional research based on the agro-ecological zones of the study area.


Diversity ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 134 ◽  
Author(s):  
Lenka Bobuľská ◽  
Lenka Demková ◽  
Andrea Čerevková ◽  
Marek Renčo

A giant goldenrod plant, Solidago gigantea, native to North America is rapidly spreading in Europe and may have serious impact on ecosystems that inhabit. There is a lack of information about the effects of this species on soil biochemical properties and distribution and activity of microbial community. We analyzed soil physicochemical properties (soil reaction, soil moisture content, organic carbon and total nitrogen content) associated with activity of microbial population (activity of fluorescein diacetate (FDA), beta-glucosidase, urease and phosphatases enzymes) between invaded and adjacent uninvaded control sites in two habitats, forest and grassland, in the lowland of southeast Slovakia during years 2016 and 2017. The results revealed that invasion of S. gigantea significantly altered several soil properties and is associated with different soil properties. Soil acidity increased, organic carbon and moisture content decreased, while total nitrogen content was not significantly affected by invasion. FDA and urease activity were significantly higher in uninvaded sites. In contrast, beta-glucosidase and alkaline phosphatase activity were enhanced by S. gigantea invasion in both ecosystems studied. Acid phosphatase was not affected by the invasion. Our study proved that S. gigantea can influence several soil microbial properties while others remained unaffected, despite its significant impact on basal soil physicochemical properties.


Sign in / Sign up

Export Citation Format

Share Document