scholarly journals Geographical Distribution and Pattern of Pesticides in Danish Drinking Water 2002–2018: Reducing Data Complexity

Author(s):  
Carina Skaarup ◽  
Kirstine Wodschow ◽  
Denitza D. Voutchkova ◽  
Jörg Schullehner ◽  
Ole Raaschou-Nielsen ◽  
...  

Pesticides are a large and heterogenous group of chemicals with a complex geographic distribution in the environment. The purpose of this study was to explore the geographic distribution of pesticides in Danish drinking water and identify potential patterns in the grouping of pesticides. Our data included 899,169 analyses of 167 pesticides and metabolites, of which 55 were identified above the detection limit. Pesticide patterns were defined by (1) pesticide groups based on chemical structure and pesticide–metabolite relations and (2) an exploratory factor analysis identifying underlying patterns of related pesticides within waterworks. The geographic distribution was evaluated by mapping the pesticide categories for groups and factor components, namely those detected, quantified, above quality standards, and not analysed. We identified five and seven factor components for the periods 2002–2011 and 2012–2018, respectively. In total, 16 pesticide groups were identified, of which six were representative in space and time with regards to the number of waterworks and analyses, namely benzothiazinone, benzonitriles, organophosphates, phenoxy herbicides, triazines, and triazinones. Pesticide mapping identified areas where multiple pesticides were detected, indicating areas with a higher pesticide burden. The results contribute to a better understanding of the pesticide pattern in Danish drinking water and may contribute to exposure assessments for future epidemiological studies.

2013 ◽  
Vol 12 (7) ◽  
pp. 460-465
Author(s):  
Sameer Amereih ◽  
Zaher Barghouthi ◽  
Lamees Majjiad

A sensitive colorimetric determination of fluoride in drinking water has been developed using a polymeric zirconium complex of 5-(2-Carboxyphenylazo)-8-Hydroxyquinoline as fluoride reagents. The method allowed a reliable determination of fluoride in range of (0.0-1.5) mg L-1. The molar absorptivity of the complex formation is 7695 ± 27 L mol-1 cm-1 at 460 nm. The sensitivity, detection limit, quantitation limit, and percentage recovery for 1.0 mg L-1 fluoride for the proposed method were found to be 0.353 ± 0.013 μg mL-1, 0.1 mg L-1, 0.3 mg L-1, and 101.7 ± 4.1, respectively.


2006 ◽  
Vol 6 (2) ◽  
pp. 47-53 ◽  
Author(s):  
D. Simazaki ◽  
M. Asami ◽  
T. Nishimura ◽  
S. Kunikane ◽  
T. Aizawa ◽  
...  

Nationwide surveys of 1,4-dioxane and methyl-t-butyl ether (MTBE) levels in raw water used for the drinking water supply were conducted at 91 water treatment plants in Japan in 2001 and 2002, prior to the revision of the drinking water quality standards. 1,4-dioxane was widely and continuously detected in raw water samples and its occurrence was more frequent and its concentrations higher in groundwater than in surface water. However, its maximum concentration in raw water was much lower than its new standard value (50 μg/L), which was determined as a level of 10−5 excessive cancer risk to humans. Trace levels of MTBE were also detected in several surface water samples.


Author(s):  
Thomas M. Semkow ◽  
Abdul J. Khan ◽  
Traci A. Menia ◽  
Xin Li ◽  
Liang T. Chu ◽  
...  

2020 ◽  
Vol 318 (5) ◽  
pp. E667-E677
Author(s):  
Felicia Castriota ◽  
Peter-James H. Zushin ◽  
Sylvia S. Sanchez ◽  
Rachael V. Phillips ◽  
Alan Hubbard ◽  
...  

The global prevalence of type 2 diabetes (T2D) has doubled since 1980. Human epidemiological studies support arsenic exposure as a risk factor for T2D, although the precise mechanism is unclear. We hypothesized that chronic arsenic ingestion alters glucose homeostasis by impairing adaptive thermogenesis, i.e., body heat production in cold environments. Arsenic is a pervasive environmental contaminant, with more than 200 million people worldwide currently exposed to arsenic-contaminated drinking water. Male C57BL/6J mice exposed to sodium arsenite in drinking water at 300 μg/L for 9 wk experienced significantly decreased metabolic heat production when acclimated to chronic cold tolerance testing, as evidenced by indirect calorimetry, despite no change in physical activity. Arsenic exposure increased total fat mass and subcutaneous inguinal white adipose tissue (iWAT) mass. RNA sequencing analysis of iWAT indicated that arsenic dysregulated mitochondrial processes, including fatty acid metabolism. Western blotting in WAT confirmed that arsenic significantly decreased TOMM20, a correlate of mitochondrial abundance; PGC1A, a master regulator of mitochondrial biogenesis; and, CPT1B, the rate-limiting step of fatty acid oxidation (FAO). Our findings show that chronic arsenic exposure impacts the mitochondrial proteins of thermogenic tissues involved in energy expenditure and substrate regulation, providing novel mechanistic evidence for arsenic’s role in T2D development.


Sign in / Sign up

Export Citation Format

Share Document