scholarly journals GeoFairy2: A Cross-Institution Mobile Gateway to Location-Linked Data for In-Situ Decision Making

2020 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Ziheng Sun ◽  
Liping Di ◽  
Sreten Cvetojevic ◽  
Zhiqi Yu

To effectively disseminate location-linked information despite the existence of digital walls across institutions, this study developed a cross-institution mobile App, named GeoFairy2, to overcome the virtual gaps among multi-source datasets and aid the general users to make thorough accurate in-situ decisions. The app provides a one-stop service with relevant information to assist with instant decision making. It was tested and proven to be capable of on-demand coupling and delivering location-based information from multiple sources. The app can help general users to crack down the digital walls among information pools and serve as a one-stop retrieval place for all information. GeoFairy2 was experimented with to gather real-time and historical information about crops, soil, water, and climate. Instead of a one-way data portal, GeoFairy2 allows general users to submit photos and observations to support citizen science projects and derive new insights, and further refine the future service. The two-directional mechanism makes GeoFairy2 a useful mobile gateway to access and contribute to the rapidly growing, heterogeneous, multisource, and location-linked datasets, and pave a way to drive us into a new mobile web with more links and less digital walls across data providers and institutions.

2008 ◽  
Vol 5 (1) ◽  
pp. 143-159 ◽  
Author(s):  
Yu Cong ◽  
Hui Du ◽  
Jinjuan Feng

ABSTRACT: Web syndication is an emerging technology that “feeds” website information to subscribers. It allows Internet users to collect, organize, and view frequently updated information from multiple sources effortlessly. We investigated whether using web syndication technology helps nonprofessional investors acquire and integrate relevant information which has been updated frequently and is from multiple sources when the investors make decisions. We obtained evidence of this new technology's effects using an experiment where subjects visited either a syndicated web page or a nonsyndicated web page and assessed two fictional companies' critical financial ratios and investment perspectives. Our results indicate that individuals who use syndication technology are more effective in acquiring relevant information updated frequently and integrating information for investment decision making than individuals who do not use such technology. The results suggest that web syndication may be used as an information integration tool for nonprofessional investors in assisting their decision making.


Author(s):  
Yuval Bitan ◽  
Roy Ilan ◽  
Steven D. Harris ◽  
Keith S. Karn

The goal of this project is to improve clinical decision-making in the intensive care unit (ICU) environment. Making the optimal decisions depends on the quality and timeliness of the information available to the clinician. We believe that healthcare professionals will make better clinical decisions when the relevant information is collected and organized in a manner appropriate to support in situ decision-making. This is especially important in complex situations such those commonly encountered in the ICU environment. Currently there is no single integrated source of information that presents relevant information to clinicians. This project is developing methods to identify the core information required to engineer the information exchange among medical devices, and the information presentation layer, to support clinical decision-making in the ICU.


2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Dodi Faedlulloh ◽  
Fetty Wiyani

This paper aimed to explain public financial governance based on good governance implementation in Jakarta Provincial Government. This paper specifically discussed towards transparancy implementation of local budget (APBD) through open data portal that publishes budget data to public. In general, financial transparency through open data has met Transparency 2.0 standards, namely the existence of encompassing, one-stop, one-click budget accountability and accessibility. But there are indeed some shortcomings that are still a concern in order to continue to maintain commitment to the principle of transparency, namely by updating data through consistent data visualization.Transparency of public finance needs to continue to be developed and improved through various innovations to maintain public trust in the government.Keywords: Public Finance, Open Data, Transparency


2020 ◽  
Author(s):  
Emma Chavez ◽  
Vanessa Perez ◽  
Angélica Urrutia

BACKGROUND : Currently, hypertension is one of the diseases with greater risk of mortality in the world. Particularly in Chile, 90% of the population with this disease has idiopathic or essential hypertension. Essential hypertension is characterized by high blood pressure rates and it´s cause is unknown, which means that every patient might requires a different treatment, depending on their history and symptoms. Different data, such as history, symptoms, exams, etc., are generated for each patient suffering from the disease. This data is presented in the patient’s medical record, in no order, making it difficult to search for relevant information. Therefore, there is a need for a common, unified vocabulary of the terms that adequately represent the diseased, making searching within the domain more effective. OBJECTIVE The objective of this study is to develop a domain ontology for essential hypertension , therefore arranging the more significant data within the domain as tool for medical training or to support physicians’ decision making will be provided. METHODS The terms used for the ontology were extracted from the medical history of de-identified medical records, of patients with essential hypertension. The Snomed-CT’ collection of medical terms, and clinical guidelines to control the disease were also used. Methontology was used for the design, classes definition and their hierarchy, as well as relationships between concepts and instances. Three criteria were used to validate the ontology, which also helped to measure its quality. Tests were run with a dataset to verify that the tool was created according to the requirements. RESULTS An ontology of 310 instances classified into 37 classes was developed. From these, 4 super classes and 30 relationships were obtained. In the dataset tests, 100% correct and coherent answers were obtained for quality tests (3). CONCLUSIONS The development of this ontology provides a tool for physicians, specialists, and students, among others, that can be incorporated into clinical systems to support decision making regarding essential hypertension. Nevertheless, more instances should be incorporated into the ontology by carrying out further searched in the medical history or free text sections of the medical records of patients with this disease.


Risks ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 115
Author(s):  
Despoina Makariou ◽  
Pauline Barrieu ◽  
George Tzougas

The key purpose of this paper is to present an alternative viewpoint for combining expert opinions based on finite mixture models. Moreover, we consider that the components of the mixture are not necessarily assumed to be from the same parametric family. This approach can enable the agent to make informed decisions about the uncertain quantity of interest in a flexible manner that accounts for multiple sources of heterogeneity involved in the opinions expressed by the experts in terms of the parametric family, the parameters of each component density, and also the mixing weights. Finally, the proposed models are employed for numerically computing quantile-based risk measures in a collective decision-making context.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Batel Yifrah ◽  
Ayelet Ramaty ◽  
Genela Morris ◽  
Avi Mendelsohn

AbstractDecision making can be shaped both by trial-and-error experiences and by memory of unique contextual information. Moreover, these types of information can be acquired either by means of active experience or by observing others behave in similar situations. The interactions between reinforcement learning parameters that inform decision updating and memory formation of declarative information in experienced and observational learning settings are, however, unknown. In the current study, participants took part in a probabilistic decision-making task involving situations that either yielded similar outcomes to those of an observed player or opposed them. By fitting alternative reinforcement learning models to each subject, we discerned participants who learned similarly from experience and observation from those who assigned different weights to learning signals from these two sources. Participants who assigned different weights to their own experience versus those of others displayed enhanced memory performance as well as subjective memory strength for episodes involving significant reward prospects. Conversely, memory performance of participants who did not prioritize their own experience over others did not seem to be influenced by reinforcement learning parameters. These findings demonstrate that interactions between implicit and explicit learning systems depend on the means by which individuals weigh relevant information conveyed via experience and observation.


Urban Science ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 3
Author(s):  
Janette Hartz-Karp ◽  
Dora Marinova

This article expands the evidence about integrative thinking by analyzing two case studies that applied the collaborative decision-making method of deliberative democracy which encourages representative, deliberative and influential public participation. The four-year case studies took place in Western Australia, (1) in the capital city Perth and surrounds, and (2) in the city-region of Greater Geraldton. Both aimed at resolving complex and wicked urban sustainability challenges as they arose. The analysis suggests that a new way of thinking, namely integrative thinking, emerged during the deliberations to produce operative outcomes for decision-makers. Building on theory and research demonstrating that deliberative designs lead to improved reasoning about complex issues, the two case studies show that through discourse based on deliberative norms, participants developed different mindsets, remaining open-minded, intuitive and representative of ordinary people’s basic common sense. This spontaneous appearance of integrative thinking enabled sound decision-making about complex and wicked sustainability-related urban issues. In both case studies, the participants exhibited all characteristics of integrative thinking to produce outcomes for decision-makers: salience—grasping the problems’ multiple aspects; causality—identifying multiple sources of impacts; sequencing—keeping the whole in view while focusing on specific aspects; and resolution—discovering novel ways that avoided bad choice trade-offs.


2021 ◽  
Vol 11 (6) ◽  
pp. 721
Author(s):  
Russell J. Boag ◽  
Niek Stevenson ◽  
Roel van Dooren ◽  
Anne C. Trutti ◽  
Zsuzsika Sjoerds ◽  
...  

Working memory (WM)-based decision making depends on a number of cognitive control processes that control the flow of information into and out of WM and ensure that only relevant information is held active in WM’s limited-capacity store. Although necessary for successful decision making, recent work has shown that these control processes impose performance costs on both the speed and accuracy of WM-based decisions. Using the reference-back task as a benchmark measure of WM control, we conducted evidence accumulation modeling to test several competing explanations for six benchmark empirical performance costs. Costs were driven by a combination of processes, running outside of the decision stage (longer non-decision time) and showing the inhibition of the prepotent response (lower drift rates) in trials requiring WM control. Individuals also set more cautious response thresholds when expecting to update WM with new information versus maintain existing information. We discuss the promise of this approach for understanding cognitive control in WM-based decision making.


2020 ◽  
Vol 12 (17) ◽  
pp. 2861
Author(s):  
Jifu Yin ◽  
Xiwu Zhan ◽  
Jicheng Liu

Soil moisture plays a vital role for the understanding of hydrological, meteorological, and climatological land surface processes. To meet the need of real time global soil moisture datasets, a Soil Moisture Operational Product System (SMOPS) has been developed at National Oceanic and Atmospheric Administration to produce a one-stop shop for soil moisture observations from all available satellite sensors. What makes the SMOPS unique is its near real time global blended soil moisture product. Since the first version SMOPS publicly released in 2010, the SMOPS has been updated twice based on the users’ feedbacks through improving retrieval algorithms and including observations from new satellite sensors. The version 3.0 SMOPS has been operationally released since 2017. Significant differences in climatological averages lead to remarkable distinctions in data quality between the newest and the older versions of SMOPS blended soil moisture products. This study reveals that the SMOPS version 3.0 has overwhelming advantages of reduced data uncertainties and increased correlations with respect to the quality controlled in situ measurements. The new version SMOPS also presents more robust agreements with the European Space Agency’s Climate Change Initiative (ESA_CCI) soil moisture datasets. With the higher accuracy, the blended data product from the new version SMOPS is expected to benefit the hydrological, meteorological, and climatological researches, as well as numerical weather, climate, and water prediction operations.


Sign in / Sign up

Export Citation Format

Share Document