scholarly journals Transcriptome Sequencing and Biochemical Analysis of Perianths and Coronas Reveal Flower Color Formation in Narcissus pseudonarcissus

2018 ◽  
Vol 19 (12) ◽  
pp. 4006 ◽  
Author(s):  
Xi Li ◽  
Dongqin Tang ◽  
Hui Du ◽  
Yimin Shi

Narcissus pseudonarcissus is an important bulbous plant with white or yellow perianths and light yellow to orange-red coronas, but little is known regarding the biochemical and molecular basis related to flower color polymorphisms. To investigate the mechanism of color formation, RNA-Seq of flower of two widely cultured cultivars (‘Slim Whitman’ and ‘Pinza’) with different flower color was performed. A total of 84,463 unigenes were generated from the perianths and coronas. By parallel metabolomic and transcriptomic analyses, we provide an overview of carotenoid biosynthesis, degradation, and accumulation in N. pseudonarcissus. The results showed that the content of carotenoids in the corona was higher than that in the perianth in both cultivars. Accordingly, phytoene synthase (PSY) transcripts have a higher abundance in the coronas than that in perianths. While the expression levels of carotenoid biosynthetic genes, like GGPPS, PSY, and LCY-e, were not significantly different between two cultivars. In contrast, the carotenoid degradation gene NpCCD4 was highly expressed in white-perianth cultivars, but was hardly detected in yellow-perianth cultivars. Silencing of NpCCD4 resulted in a significant increase in carotenoid accumulation, especially in all-trans-β-carotene. Therefore, we presume that NpCCD4 is a crucial factor that causes the low carotenoid content and color fading phenomenon of ‘Slim Whitman’ by mediating carotenoid turnover. Our findings provide mass RNA-seq data and new insights into carotenoid metabolism in N. pseudonarcissus.

2019 ◽  
Author(s):  
Huali Zhang ◽  
Shiya Zhang ◽  
Hua Zhang ◽  
Xi Chen ◽  
Fang Liang ◽  
...  

Abstract Background: Marigold (Tagetes erecta L.) is an important ornamental plant with a wide variety of flower colors. Despite its economic value, few biochemical and molecular studies have explored the generation of flower color in this species. Results: To study the mechanism underlying marigold petal color, we performed a metabolomics analysis and de novo cDNA sequencing on the inbred line ‘V-01’ and its petal color mutant ‘V-01M’ at four flower developmental stages. A total of 49,217 unigenes were identified from 24 cDNA libraries. Based on our transcriptomic and metabolomic analyses, we present an overview of carotenoid biosynthesis, degradation, and accumulation in marigold flowers. The carotenoid content of the yellow mutant ‘V-01M’ was higher than that of the orange inbred line ‘V-01’, and the abundances of the yellow compounds lutein, neoxanthin, violaxanthin, zeaxanthin, and antheraxanthin were significantly higher in the mutant. During flower development, the carotenoid biosynthesis genes were upregulated in both ‘V-01’ and ‘V-01M’, with no significant differences between the two lines. By contrast, the carotenoid degradation genes were dramatically downregulated in the yellow mutant ‘V-01M’. Conclusions: We therefore speculate that the carotenoid degradation genes are the key factors regulating the carotenoid content of marigold flowers. Our research provides a large amount of transcriptomic data and insights into the marigold color metabolome.


2014 ◽  
Vol 6 (2) ◽  
pp. 178-184 ◽  
Author(s):  
KiByung LIM ◽  
Adnan YOUNIS ◽  
Jong TAEK PARK ◽  
Yoon JUNG HWANG

In this study naturally growing morphological variation of Lilium tsingtauense (Korean wheel lily), from southern Chung San Island to northern Mount Seorak, was investigated in 16 habitats around the country. Morphological analysis revealed that this species had its own unique characteristics in different habitats. Flowers with luster are in actinomorphic form, with shades of orange, each plant having an average of 2.4 flowers that blossom upward. The shape of flower petals was from oval to oblong. The width of the petals, which determines the shape of the flower, significantly varied among regions. Flower petals showed purple spots and its occurrence greatly varied among plants from almost none to 300 spots per flower. In addition, when the number of spots increased, the flower color was more vivid. Leaves were typically one-tiered verticillate and most of the leaves were long, oval and some were lanceolate. Young leaves showed definitive patterns that faded during growth. Starting from the verticillate leaves, stems below the leaves were smooth, although 81% of all stems, above the verticillate leaves, showed rough micro-protrusions. Bulb shapes were long and vertically elliptical. The ramentum was light yellow in color and the base was darker, with the color fading toward the upper region of the plant. The shape of the ramentum was long, with a pointy end, and its adhesiveness was weak. This study offers basic fundamental information for the effective exploitation and recognition of L. tsingtauense resources as a potential cut flower and potting plant in floral trade worldwide.


2021 ◽  
Author(s):  
Yu Ding ◽  
Ding-Hai Yang ◽  
Ma-Yin Wang ◽  
Dai-Cheng Hao ◽  
Wei-Shi Li ◽  
...  

Abstract Background Phalaenopsis is an important ornamental plant, which occupies an important position in the world flower market and has great economic value due to its rich and diverse flower colors. In order to investigate the flower color formation of Phalaenopsis at transcription level, the flower color formation involved genes were identified from RNA-seq in this study.Results White and purple petals of Phalaenopsis were collected in this study, and results were focused on two aspects: (1) the differential expression genes (DEGs) between white and purple flower color; and (2) association between SNP mutations and DEGs in transcriptome level. Results indicated that a total of 1,175 DEGs were identified, and the up- and down-regulation genes were 718 and 457, respectively. Gene Ontology (GO) and pathway enrichment showed that the biosynthesis of secondary metabolites pathway was key responsible for color formation and twelve crucial genes (C4H, CCoAOMT, F3'H, UA3'5'GT, PAL, 4CL, CCR, CAD, CALDH, bglx, SGTase and E1.11.17) from them involved in the regulation of flower color in Phalaenopsis. Conclusion This study firstly reported that the SNP mutations strongly associated with DEGs in color formation at RNA level, and provides a new insight to further investigate the gene expression and its relationship with genetic variants from RNA-seq data in other species.


2020 ◽  
Vol 19 (4) ◽  
pp. 324-335
Author(s):  
Upasna Chettry ◽  
Nikhil K Chrungoo

Abstract Carotenoids are mostly C40 terpenoids that participate in several important functions in plants including photosynthesis, responses to various forms of stress, signal transduction and photoprotection. While the antioxidant potential of carotenoids is of particular importance for human health, equally important is the role of β-carotene as the precursor for vitamin A in the human diet. Rice, which contributes upto 40% of dietary energy for mankind, contains very low level of β-carotene, thereby making it an important crop for enhancing β-carotene accumulation in its grains and consequently targeting vitamin A deficiency. Biosynthesis of carotenoids in the endosperm of white rice is blocked at the first enzymatic step wherein geranylgeranyl diphosphate is converted to phytoene by the action of phytoene synthase (PSY). Strategies aimed at enhancing β-carotene levels in the endosperm of white rice identified Narcissus pseudonarcissus (npPSY) and bacterial CRT1 as the regulators of the carotenoid biosynthetic pathway in rice. Besides transcriptional regulation of PSY, posttranscriptional regulation of PSY expression by OR gene, molecular synergism between ε-LCY and β-LCY and epigenetic control of CRITSO through SET DOMAIN containing protein appear to be the other regulatory nodes which regulate carotenoid biosynthesis and accumulation in rice grains. In this review, we elucidate a comprehensive and deeper understanding of the regulatory mechanisms of carotenoid metabolism in crops that will enable us to identify an effective tool to alleviate carotenoid content in rice grains.


Author(s):  
Liqun Ma ◽  
Ni Zeng ◽  
Ke Cheng ◽  
Jinyan Li ◽  
Keru Wang ◽  
...  

Abstract The tomato fruit of green-flesh (gf) mutant ripen to a muddy brown color and has been demonstrated previously to be a loss-of-function mutant. Here, we provide more evidence to support this view that SlSGR1 involved in color change in ripening tomato fruits. Knocking out SlSGR1 expression using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 genome editing strategy showed obviously a muddy brown color with significantly higher chlorophyll and carotenoid content compared with WT fruits. To further verify the role of SlSGR1 in fruit color change, we performed RNA-seq analysis, where a total of 354 differentially expressed genes (124/230 down-/upregulated) were identified between WT and slsgr1. Additionally, the expression of numerous genes associated with photosynthesis and chloroplast function changed significantly when SlSGR1 was knocked out. Taken together, these results indicate that SlSGR1 is involved color change in ripening fruit via chlorophyll degradation and carotenoid biosynthesis.


2020 ◽  
Vol 11 ◽  
Author(s):  
Wanpeng Xi ◽  
Lina Zhang ◽  
Shengyu Liu ◽  
Guohua Zhao

Carotenoids are important coloration molecules and indispensable component of the human diet. And these compounds confer most of the apricot fruit yellow or orange color. In China, fruit of some apricot cultivar present light-yellow color but strong flowery flavor, however, the chemical mechanism remains unknown. Here, carotenoids and aroma volatile apocarotenoids (AVAs) in three skin types of apricot cultivars (orange, yellow, and light-yellow skinned) were determined by HPLC and GC-MS, respectively. And the transcript levels of carotenogenic genes were analyzed by qRT-PCR. The orange-skinned cultivars “Hongyu” and “Danxing” fruit presented the most abundant total carotenoid, β-carotene and specific α-carotene contents, and β-carotene (52–77%) increased to become the dominant carotenoid during fruit ripening. The transcript levels of lycopene β-cyclase (LCYb) and β-carotene hydroxylase (CHYb) sharply increased during ripening. The yellow-skinned cultivars “Sulian No. 2” and “Akeyaleke” fruit contained lower levels of total carotenoids and β-carotene but were rich in phytoene. The light-yellow coloration of “Baixing” and “Luntaixiaobaixing” fruit was attributed to low amounts of total carotenoids, lutein, and neoxanthin and an absence of β-cryptoxanthin, but high level of aroma volatile apocarotenoids (AVAs) such as β-ionone were detected in these cultivars fruit, accompanied by low transcript levels of carotene hydroxylase (CYP) and zeaxanthin epoxidase (ZEP) but high levels of carotenoid cleavage dioxygenase 1 (CCD1) and CCD4. Correlation analysis showed that the expression level of CCD1 negatively correlated with carotenoid accumulation but positively with AVAs production. These collected results suggest that both carotenoid biosynthesis and degradation are important for apricot coloration and aroma formation. CYP, ZEP, CCD1, and CCD4 may be the key regulation points for carotenoid and AVAs accumulation in apricot fruit, which provide important targets for quality-oriented molecular breeding.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Huali Zhang ◽  
Shiya Zhang ◽  
Hua Zhang ◽  
Xi Chen ◽  
Fang Liang ◽  
...  

Abstract Marigold (Tagetes erecta L.) is an important ornamental plant with a wide variety of flower colors. Despite its economic value, few biochemical and molecular studies have explored the generation of flower color in this species. To study the mechanism underlying marigold petal color, we performed a metabolite analysis and de novo cDNA sequencing on the inbred line ‘V-01’ and its petal color mutant ‘V-01M’ at four flower developmental stages. A total of 49,217 unigenes were identified from 24 cDNA libraries. Based on our metabolites and transcriptomic analyses, we present an overview of carotenoid biosynthesis, degradation, and accumulation in marigold flowers. The carotenoid content of the yellow mutant ‘V-01M’ was higher than that of the orange inbred line ‘V-01’, and the abundances of the yellow compounds lutein, neoxanthin, violaxanthin, zeaxanthin, and antheraxanthin were significantly higher in the mutant. During flower development, the carotenoid biosynthesis genes were upregulated in both ‘V-01’ and ‘V-01M’, with no significant differences between the two lines. By contrast, the carotenoid degradation genes were dramatically downregulated in the yellow mutant ‘V-01M’. We therefore speculate that the carotenoid degradation genes are the key factors regulating the carotenoid content of marigold flowers. Our research provides a large amount of transcriptomic data and insights into the marigold color metabolome.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 454
Author(s):  
Yucheng Liu ◽  
Bin Dong ◽  
Chao Zhang ◽  
Liyuan Yang ◽  
Yiguang Wang ◽  
...  

Osmanthus fragrans is a well-known native plant in China, and carotenoids are the main group of pigments in the petals. Abscisic acid (ABA) is one of the products of the metabolic pathway of carotenoids. Application of ABA could affect pigmentation of flower petals by changing the carotenoid content. However, little is known about the effects of ABA treatment on carotenoid accumulation in O. fragrans. In this study, different concentrations of ABA (0, 150 and 200 mg/L) were spread on the petals of O. fragrans ‘Yanhonggui’. The petal color of ‘Yanhonggui’ receiving every ABA treatment was deeper than that of the control. The content of total carotenoids in the petals significantly increased with 200 mg/L ABA treatment. In the petals, α-carotene and β-carotene were the predominant carotenoids. The expression of several genes involved in the metabolism of carotenoids increased with 200 mg/L ABA treatment, including PSY1, PDS1, Z-ISO1, ZDS1, CRTISO, NCED3 and CCD4. However, the transcription levels of the latter two carotenoid degradation-related genes were much lower than of the five former carotenoid biosynthesis-related genes; the finding would explain the significant increase in total carotenoids in ‘Yanhonggui’ petals receiving the 200 mg/L ABA treatment.


2000 ◽  
Vol 66 (1) ◽  
pp. 64-72 ◽  
Author(s):  
Delphine Lagarde ◽  
Laurent Beuf ◽  
Wim Vermaas

ABSTRACT The psbAII locus was used as an integration platform to overexpress genes involved in carotenoid biosynthesis inSynechocystis sp. strain PCC 6803 under the control of the strong psbAII promoter. The sequences of the genes encoding the yeast isopentenyl diphosphate isomerase (ipi) and theSynechocystis β-carotene hydroxylase (crtR) and the linked Synechocystis genes coding for phytoene desaturase and phytoene synthase (crtP andcrtB, respectively) were introduced intoSynechocystis, replacing the psbAII coding sequence. Expression of ipi, crtR, andcrtP and crtB led to a large increase in the corresponding transcript levels in the mutant strains, showing that the psbAII promoter can be used to drive transcription and to overexpress various genes in Synechocystis. Overexpression of crtP and crtB led to a 50% increase in the myxoxanthophyll and zeaxanthin contents in the mutant strain, whereas the β-carotene and echinenone contents remained unchanged. Overexpression of crtR induced a 2.5-fold increase in zeaxanthin accumulation in the corresponding overexpressing mutant compared to that in the wild-type strain. In this mutant strain, zeaxanthin becomes the major pigment (more than half the total amount of carotenoid) and the β-carotene and echinenone amounts are reduced by a factor of 2. However, overexpression of ipi did not result in a change in the carotenoid content of the mutant. To further alter the carotenoid content of Synechocystis, the crtOgene, encoding β-carotene ketolase, which converts β-carotene to echinenone, was disrupted in the wild type and in the overexpressing strains so that they no longer produced echinenone. In this way, by a combination of overexpression and deletion of particular genes, the carotenoid content of cyanobacteria can be altered significantly.


2019 ◽  
Vol 20 (9) ◽  
pp. 2246 ◽  
Author(s):  
Cui-Cui Jiang ◽  
Yan-Fang Zhang ◽  
Yan-Jin Lin ◽  
Yuan Chen ◽  
Xin-Kun Lu

Pummelo (Citrus maxima) is one of important fruit trees, which belongs to Citrus species. The fruits of different pummelo cultivars have different colors and differ in the contents of carotenoid. Our results clearly showed that ‘Huangjinmiyou’ (HJMY) has the highest content of β-carotene, followed by ‘Hongroumiyou’ (HRMY) and ‘Guanximiyou’ (GXMY). Lycopene is dominantly accumulated in HRMY. However, the molecular mechanism underlying the carotenoid accumulation in pummelo flesh is not fully understood. In this study, we used the RNA-Seq technique to investigate the candidate genes of carotenoid metabolism in the flesh of pummelo cv. GXMY and its mutants HRMY and HJMY in three development periods of fruit. After data assembly and bioinformatic analysis, a total of 357 genes involved in biosynthesis of secondary metabolites were isolated, of which 12 differentially expressed genes (DEGs) are involved in carotenoid biosynthesis. Among these 12 DEGs, phytoene synthase (PSY2), lycopene β-cyclase (LYCB2), lycopene Ɛ-cyclase (LYCE), carotenoid cleavage dioxygenases (CCD4), 9-cis-epoxycarotenoid dioxygenase (NCED2), aldehyde oxidase 3 (AAO3), and ABA 8′-hydroxylases (CYP707A1) are the most distinct DEGs in three pummelo cultivars. The co-expression analysis revealed that the expression patterns of several transcription factors such as bHLH, MYB, ERF, NAC and WRKY are highly correlated with DEGs, which are involved in carotenoid biosynthesis. In addition, the expression patterns of 22 DEGs were validated by real-time quantitative PCR (RT-qPCR) and the results are highly concordant with the RNA-Seq results. Our results provide a global vision of transcriptomic profile among three pummelo cultivars with different pulp colors. These results would be beneficial to further study the molecular mechanism of carotenoid accumulation in pummelo flesh and help the breeding of citrus with high carotenoid content.


Sign in / Sign up

Export Citation Format

Share Document