scholarly journals Mechanical Model for Catch-Bond-Mediated Cell Adhesion in Shear Flow

2020 ◽  
Vol 21 (2) ◽  
pp. 584 ◽  
Author(s):  
Long Li ◽  
Wei Kang ◽  
Jizeng Wang

Catch bond, whose lifetime increases with applied tensile force, can often mediate rolling adhesion of cells in a hydrodynamic environment. However, the mechanical mechanism governing the kinetics of rolling adhesion of cells through catch-bond under shear flow is not yet clear. In this study, a mechanical model is proposed for catch-bond-mediated cell adhesion in shear flow. The stochastic reaction of bond formation and dissociation is described as a Markovian process, whereas the dynamic motion of cells follows classical analytical mechanics. The steady state of cells significantly depends on the shear rate of flow. The upper and lower critical shear rates required for cell detachment and attachment are extracted, respectively. When the shear rate increases from the lower threshold to the upper threshold, cell rolling became slower and more regular, implying the flow-enhanced adhesion phenomenon. Our results suggest that this flow-enhanced stability of rolling adhesion is attributed to the competition between stochastic reactions of bonds and dynamics of cell rolling, instead of force lengthening the lifetime of catch bonds, thereby challenging the current view in understanding the mechanism behind this flow-enhanced adhesion phenomenon. Moreover, the loading history of flow defining bistability of cell adhesion in shear flow is predicted. These theoretical predictions are verified by Monte Carlo simulations and are related to the experimental observations reported in literature.

Author(s):  
Vijay K. Gupta ◽  
Charles D. Eggleton

Cell adhesion plays a pivotal role in diverse biological processes, including inflammation, tumor metastasis, arteriosclerosis, and thrombosis. Changes in cell adhesion can be the defining event in a wide range of diseases, including cancer, atherosclerosis, osteoporosis, and arthritis. Cells are exposed constantly to hemodynamic/hydrodynamic forces and the balance between the dispersive hydrodynamic forces and the adhesive forces generated by the interactions of membrane-bound receptors and their ligands determines cell adhesion. Therefore to develop novel tissue engineering based approaches for therapeutic interventions in thrombotic disorders, inflammatory, and a wide range of other diseases, it is crucial to understand the complex interplay among blood flow, cell adhesion, and vascular biology at the molecular level. In response to tissue injury or infection, polymorphonuclear (PMN) leukocytes are recruited from the bloodstream to the site of inflammation through interactions between cell surface receptors and complementary ligands expressed on the surface of the endothelium [1]. PMN-PMN interactions also contribute to the process of recruitment. It has been shown that PMNs rolling on activated endothelium cells can mediate secondary capture of PMNs flowing in the free blood stream through homotypic interactions [2]. This is mediated by L-selectin (ligand) binding to PSGL-1 (receptor) between a free-stream PMN and one already adherent to the endothelium cells [3]. Both PSGL-1 and L-selectin adhesion molecules are concentrated on tips of PMN microvilli [4]. Homotypic PMN aggregation in vivo or in vitro is supported by multiple L-selectin–PSGL-1 bondings between pairs of microvilli. The ultimate objective of our work is to develop software that can simulate the adhesion of cells colliding under hydrodynamic forces that can be used to investigate the complex interplay among the physical mechanisms and scales involved in the adhesion process. However, cell-cell adhesion is a complex phenomenon involving the interplay of bond kinetics and hydrodynamics. Hence, as a first step we recently developed a 3-D computational model based on the Immersed Boundary Method to simulate adhesion-detachment of two PMN cells in quiescent conditions and the exposing the cells to external pulling forces and shear flow in order to investigate the behavior of the nano-scale molecular bonds to forces applied at the cellular scale [5]. Our simulations predicted that the total number of bonds formed is dependent on the number of available receptors (PSGL-1) when ligands (L-selectin) are in excess, while the excess amount of ligands controls the rate of bond formation [5]. Increasing equilibrium bond length causes an increased intercellular contact area hence results in a higher number of receptor-ligand bonds [5]. Off-rates control the average number of bonds by modulating bond lifetimes while On-rate constants determine the rate of bond formation [5]. An applied external pulling force leads to time-dependent on- and off-rates and causes bond rupture [5]. It was shown that the time required for bond rupture in response to an applied external force is inversely proportional to the applied external force and decreases with increasing offrate [5]. Fig. 1 shows the time evolution of the total number of bonds formed for various values of NRmv (number of receptor) and NLmv (number of ligand). As expected, the total number of bonds formed at equilibrium is dependent on NRmv when NLmv is in excess. In this particular case study since two pairs (or four) microvilli each with NRmv are involved in adhesion hence the equilibrium bond number is approximately 4NRmv. It is noticed that for NRmv = 50, as we vary NLmv the mean value of the total number of bonds at equilibrium does not change appreciably. However, it can be noticed from Fig. 1 that for NRmv = 50, as the excess number of ligands (NLmv) increases there is a slight increase in the rate of bond formation due to the increase in probability of bond formation. Having developed confidence in the ability of the numerical method to simulate the adhesion of two cells that can form up to 200 bonds, we apply the method to study the effect of shear rate on the detachment of two cells. In particular, we first would like to establish the minimum shear rate needed for the two cells to detach for a given number of bonds between them. Fig. 2 shows the variation of force per bond at no rupture with number of bonds for various shear rates indicated. It is seen that at a given shear rate as the number of bonds increases the force per bond at no rupture decreases. This is attributed to the fact that force caused by shear flow is shared equally among the existing bonds. Further, it is seen that a given number of bonds as the shear rate increases the force per bond at no rupture increases. This is due to the fact that at a given number of bonds between the cells as we increase the shear rate the force caused by the flow increases hence the force per bond increases. We further notice that at shear rate = 3000 s−1 cells attached either by a single bond or by two bonds detach while they don’t for higher (> 2) number of bonds. This clearly demonstrate that there is a minimum shear rate needed to detach cells adhered by a given number of bonds. The higher the number of bonds, the higher the minimum shear rate for complete detachment of cells. For example, from Fig. 2 is it clear that for the cells adhered by two and five bonds the minimum shear rate needed for complete detachment of these two cells are 3000 s−1 and 6000 s−1, respectively.


2018 ◽  
Author(s):  
Michael Morabito ◽  
Chuqiao Dong ◽  
Wei Wei ◽  
Xuanhong Cheng ◽  
Xiaohui F. Zhang ◽  
...  

ABSTRACTUsing Brownian molecular dynamics simulations, we examine the internal dynamics and biomechanical response of von Willebrand Factor (vWF) multimers subject to shear flow. The coarse grain multimer description employed here is based on a monomer model in which the A2 domain of vWF is explicitly represented by a non-linear elastic spring whose mechanical response was fit to experimental force/extension data from vWF monomers. This permits examination of the dynamic behavior of hydrodynamic forces acting on A2 domains as a function of shear rate and multimer length, as well as position of an A2 domain along the multimer contour. Force/position data reveal that collapsed multimers exhibit a force distribution with two peaks, one near each end of the chain; unraveled multimers, however, show a single peak in A2 domain force near the center of multimers. Guided further by experimental data, significant excursions of force acting on a domain are associated with an increasing probability for A2 domain unfolding. Our results suggest that the threshold shear rate required to induce A2 domain unfolding is inversely proportional to multimer length. By examining data for the duration and location of significant force excursions, convincing evidence is advanced that unfolding of A2 domains, and therefore scission of vWF multimers by the size-regulating blood enzyme ADAMTS13, happen preferentially near the center of unraveled multimers.


2021 ◽  
Vol 14 (1) ◽  
pp. 65-74
Author(s):  
Thong M. Cao ◽  
Michael R. King

Abstract Introduction E-selectin is a member of the selectin family of cell adhesion molecules expressed on the plasma membrane of inflamed endothelium and facilitates initial leukocyte tethering and subsequent cell rolling during the early stages of the inflammatory response via binding to glycoproteins expressing sialyl LewisX and sialyl LewisA (sLeX/A). Existing crystal structures of the extracellular lectin/EGF-like domain of E-selectin complexed with sLeX have revealed that E-selectin can exist in two conformation states, a low affinity (bent) conformation, and a high affinity (extended) conformation. The differentiating characteristic of the two conformations is the interdomain angle between the lectin and the EGF-like domain. Methods Using molecular dynamics (MD) simulations we observed that in the absence of tensile force E-selectin undergoes spontaneous switching between the two conformational states at equilibrium. A single amino acid substitution at residue 2 (serine to tyrosine) on the lectin domain favors the extended conformation. Results Steered molecular dynamics (SMD) simulations of E-selectin and PSGL-1 in conjunction with experimental cell adhesion assays show a longer binding lifetime of E-selectin (S2Y) to PSGL-1 compared to wildtype protein. Conclusions The findings in this study advance our understanding into how the structural makeup of E-selectin allosterically influences its adhesive dynamics.


1989 ◽  
Vol 61 (03) ◽  
pp. 485-489 ◽  
Author(s):  
Eva Bastida ◽  
Lourdes Almirall ◽  
Antonio Ordinas

SummaryBlood platelets are thought to be involved in certain aspects of malignant dissemination. To study the role of platelets in tumor cell adherence to vascular endothelium we performed studies under static and flow conditions, measuring tumor cell adhesion in the absence or presence of platelets. We used highly metastatic human adenocarcinoma cells of the lung, cultured human umbilical vein endothelial cells (ECs) and extracellular matrices (ECM) prepared from confluent EC monolayers. Our results indicated that under static conditions platelets do not significantly increase tumor cell adhesion to either intact ECs or to exposed ECM. Conversely, the studies performed under flow conditions using the flat chamber perfusion system indicated that the presence of 2 × 105 pl/μl in the perfusate significantly increased the number of tumor cells adhered to ECM, and that this effect was shear rate dependent. The maximal values of tumor cell adhesion were obtained, in presence of platelets, at a shear rate of 1,300 sec-1. Furthermore, our results with ASA-treated platelets suggest that the role of platelets in enhancing tumor cell adhesion to ECM is independent of the activation of the platelet cyclooxygenase pathway.


2015 ◽  
Vol 782 ◽  
pp. 260-299 ◽  
Author(s):  
Preyas N. Shah ◽  
Eric S. G. Shaqfeh

Surfaces that include heterogeneous mass transfer at the microscale are ubiquitous in nature and engineering. Many such media are modelled via an effective surface reaction rate or mass transfer coefficient employing the conventional ansatz of kinetically limited transport at the microscale. However, this assumption is not always valid, particularly when there is strong flow. We are interested in modelling reactive and/or porous surfaces that occur in systems where the effective Damköhler number at the microscale can be $O(1)$ and the local Péclet number may be large. In order to expand the range of the effective mass transfer surface coefficient, we study transport from a uniform bath of species in an unbounded shear flow over a flat surface. This surface has a heterogeneous distribution of first-order surface-reactive circular patches (or pores). To understand the physics at the length scale of the patch size, we first analyse the flux to a single reactive patch. We use both analytic and boundary element simulations for this purpose. The shear flow induces a 3-D concentration wake structure downstream of the patch. When two patches are aligned in the shear direction, the wakes interact to reduce the per patch flux compared with the single-patch case. Having determined the length scale of the interaction between two patches, we study the transport to a periodic and disordered distribution of patches again using analytic and boundary integral techniques. We obtain, up to non-dilute patch area fraction, an effective boundary condition for the transport to the patches that depends on the local mass transfer coefficient (or reaction rate) and shear rate. We demonstrate that this boundary condition replaces the details of the heterogeneous surfaces at a wall-normal effective slip distance also determined for non-dilute patch area fractions. The slip distance again depends on the shear rate, and weakly on the reaction rate, and scales with the patch size. These effective boundary conditions can be used directly in large-scale physics simulations as long as the local shear rate, reaction rate and patch area fraction are known.


2011 ◽  
Vol 678 ◽  
pp. 221-247 ◽  
Author(s):  
P. M. VLAHOVSKA ◽  
Y.-N. YOUNG ◽  
G. DANKER ◽  
C. MISBAH

We study the motion and deformation of a liquid capsule enclosed by a surface-incompressible membrane as a model of red blood cell dynamics in shear flow. Considering a slightly ellipsoidal initial shape, an analytical solution to the creeping-flow equations is obtained as a regular perturbation expansion in the excess area. The analysis takes into account the membrane fluidity, area-incompressibility and resistance to bending. The theory captures the observed transition from tumbling to swinging as the shear rate increases and clarifies the effect of capsule deformability. Near the transition, intermittent behaviour (swinging periodically interrupted by a tumble) is found only if the capsule deforms in the shear plane and does not undergo stretching or compression along the vorticity direction; the intermittency disappears if deformation along the vorticity direction occurs, i.e. if the capsule ‘breathes’. We report the phase diagram of capsule motions as a function of viscosity ratio, non-sphericity and dimensionless shear rate.


Biorheology ◽  
1988 ◽  
Vol 25 (1-2) ◽  
pp. 113-122 ◽  
Author(s):  
T. Murata ◽  
T.W. Secomb

Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 926 ◽  
Author(s):  
Richard Schwarzl ◽  
Roland Netz

We study collapsed homo-polymeric molecules under linear shear flow conditions using hydrodynamic Brownian dynamics simulations. Tensile force profiles and the shear-rate-dependent globular-coil transition for grafted and non-grafted chains are investigated to shine light on the different unfolding mechanisms. The scaling of the critical shear rate, at which the globular-coil transition takes place, with the monomer number is inverse for the grafted and non-grafted scenarios. This implicates that for the grafted scenario, larger chains have a decreased critical shear rate, while for the non-grafted scenario higher shear rates are needed in order to unfold larger chains. Protrusions govern the unfolding transition of non-grafted polymers, while for grafted polymers, the maximal tension appears at the grafted end.


Sign in / Sign up

Export Citation Format

Share Document