scholarly journals Roles of Adipokines in Digestive Diseases: Markers of Inflammation, Metabolic Alteration and Disease Progression

2020 ◽  
Vol 21 (21) ◽  
pp. 8308
Author(s):  
Ming-Ling Chang ◽  
Zinger Yang ◽  
Sien-Sing Yang

Adipose tissue is a highly dynamic endocrine tissue and constitutes a central node in the interorgan crosstalk network through adipokines, which cause pleiotropic effects, including the modulation of angiogenesis, metabolism, and inflammation. Specifically, digestive cancers grow anatomically near adipose tissue. During their interaction with cancer cells, adipocytes are reprogrammed into cancer-associated adipocytes and secrete adipokines to affect tumor cells. Moreover, the liver is the central metabolic hub. Adipose tissue and the liver cooperatively regulate whole-body energy homeostasis via adipokines. Obesity, the excessive accumulation of adipose tissue due to hyperplasia and hypertrophy, is currently considered a global epidemic and is related to low-grade systemic inflammation characterized by altered adipokine regulation. Obesity-related digestive diseases, including gastroesophageal reflux disease, Barrett’s esophagus, esophageal cancer, colon polyps and cancer, non-alcoholic fatty liver disease, viral hepatitis-related diseases, cholelithiasis, gallbladder cancer, cholangiocarcinoma, pancreatic cancer, and diabetes, might cause specific alterations in adipokine profiles. These patterns and associated bases potentially contribute to the identification of prognostic biomarkers and therapeutic approaches for the associated digestive diseases. This review highlights important findings about altered adipokine profiles relevant to digestive diseases, including hepatic, pancreatic, gastrointestinal, and biliary tract diseases, with a perspective on clinical implications and mechanistic explorations.

Endocrinology ◽  
2011 ◽  
Vol 152 (3) ◽  
pp. 804-815 ◽  
Author(s):  
M. Osto ◽  
E. Zini ◽  
M. Franchini ◽  
C. Wolfrum ◽  
F. Guscetti ◽  
...  

Acute inflammation in humans is associated with transient insulin resistance (IR) and dyslipidemia. Chronic low-grade inflammation is a pathogenic component of IR and adipose tissue dysfunction in obesity-induced type 2 diabetes. Because feline diabetes closely resembles human type 2 diabetes, we studied whether lipopolysaccharide (LPS)-induced subacute inflammation, in the absence of obesity, is the potential primary cause of IR and metabolic disorders. Cats received increasing iv doses (10–1000 ng/kg−1 · h−1) of LPS (n = 5) or saline (n = 5) for 10 d. Body temperature, proinflammatory and metabolic markers, and insulin sensitivity were measured daily. Tissue mRNA and protein expression were quantified on d 10. LPS infusion increased circulating and tissue markers of inflammation. Based on the homeostasis model assessment, endotoxemia induced transient IR and β-cell dysfunction. At the whole-body level, IR reverted after the 10-d treatment; however, tissue-specific indications of IR were observed, such as down-regulation of adipose glucose transporter 4, hepatic peroxisome proliferative activated receptor-γ1 and -2, and muscle insulin receptor substrate-1. In adipose tissue, increased hormone-sensitive lipase activity led to reduced adipocyte size, concomitant with increased plasma and hepatic triglyceride content and decreased total and high-density lipoprotein cholesterol levels. Prolonged LPS-induced inflammation caused acute IR, followed by long-lasting tissue-specific dysfunctions of lipid-, glucose-, and insulin metabolism-related targets; this ultimately resulted in dyslipidemia but not whole-body IR. Endotoxemia in cats may provide a promising model to study the cross talk between metabolic and inflammatory responses in the development of adipose tissue dysfunction and IR.


2020 ◽  
Vol 20 (2) ◽  
pp. 242-255
Author(s):  
Athina Chasapi ◽  
Konstantinos Balampanis ◽  
Anna Tanoglidi ◽  
Eleni Kourea ◽  
George I. Lambrou ◽  
...  

Background: Obesity is a global epidemic which is associated with several cardiometabolic comorbidities and is characterized by chronic, low grade systemic inflammation. Numerous biomarkers have been implicated in the pathophysiology of the disease, including transcription factors and coregulators. Steroid Receptor Coactivator (SRC)-family represent the master regulators of metabolic pathways and their dysregulation is strongly associated with numerous metabolic disorders. Methods: 50 morbidly obese patients participated in the present study. Biopsies were collected from visceral adipose tissue, subcutaneous adipose tissue, skeletal muscle, extra-myocellular adipose tissue and liver. We evaluated the differential protein expression of NFATc1, SRC-2/TIF-2, SRC-3/AIB-1 and inflammatory biomarkers CD68 and CD3 by immunohistochemistry. The current study was designed to determine any correlations between the transcription factor NFATc1 and the SRC coregulators, as well as any associations with the inflammatory biomarkers. Results: We identified SRC-3 as a hepatic NFATc1 coactivator and we demonstrated its possible role in energy homeostasis and lipid metabolism. Moreover, we revealed a complex and extensive intraand inter-tissue network among the three main investigated proteins and the inflammatory biomarkers, suggesting their potential participation in the obesity-induced inflammatory cascade. Conclusions: Steroid receptor coactivators are critical regulators of human metabolism with pleiotropic and tissue-specific actions. We believe that our study will contribute to the better understanding of the complex multi-tissue interactions that are disrupted in obesity and can therefore lead to numerous cardiometabolic diseases. Further on, our present findings suggest that SRC-3/AIB-1 could constitute possible future drug targets.


2021 ◽  
Vol 5 (1) ◽  
pp. 001-007
Author(s):  
Mishra A ◽  
Shestopalov AV ◽  
Gaponov AM ◽  
Alexandrov IA ◽  
Roumiantsev SA

Background: Adipose tissue is one of the main sites of energy homeostasis that regulates whole body metabolism with the help of adipokines. Disruption in its proper functioning results in adipose tissue remodeling (primarily hypertrophy and hyperplasia) which directly influences the secretion of said adipokines. Obesity characterized as chronic low-grade inflammation of the adipose tissue is one such condition that has far reaching effects on whole body metabolism. Inflammation in turn results in immune cells infiltrating into the tissue and further promoting adipocyte dysfunction. Purpose: In our study we explored this adipose tissue-innate immunity axis by differentiating adipose tissue derived stem cells (ADSCs) into white and beige adipocytes. We further stimulated our cultures with lipopolysaccharide (LPS), flagellin, or meteorin-like, glial cell differentiation regulator (METRNL) to trigger an inflammatory response. We then evaluated Toll-like receptor (TLR) mRNA expression and secretion of interleukin (IL-6), interleukin-8 (IL-8), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) in these cultures. Results: We found that TLR2 is the highest expressed receptor in adipocytes. Further, LPS and METRNL are strong activators of TLR2 in white and beigeBMP7(-) adipocytes. TLR4 was not significantly expressed in any of our cultures despite LPS stimulation. TLR9 expression is upregulated in ADSCs upon LPS and METRNL stimulation. IL-6 and IL-8 secretion is increased upon LPS stimulation in white adipocytes. METRNL activates both IL-6 and IL-8 expression in adipocyte cultures. Lastly, BDNF and NGF is secreted by all adipocyte cultures with beigeBMP7(-) and beigeBMP7(+) secreting slightly higher amounts in comparison to white adipocytes. Conclusion: ADSCs and adipocytes alike are capable of expressing TLRs, but white adipocytes remain the highest expressing in both control and stimulated cultures. TLR2 is highly expressed in white and beige adipocytes whereas TLR4 showed no significant expression. LPS and METRNL trigger IL-6 and IL-8 secretion in adipocytes. Products of white adipocyte “browning” are capable of secreting higher amounts of BDNF and NGF in comparison to white adipocytes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haiyan Zhou ◽  
Xinyi Peng ◽  
Jie Hu ◽  
Liwen Wang ◽  
Hairong Luo ◽  
...  

AbstractAdipose tissue-resident T cells have been recognized as a critical regulator of thermogenesis and energy expenditure, yet the underlying mechanisms remain unclear. Here, we show that high-fat diet (HFD) feeding greatly suppresses the expression of disulfide-bond A oxidoreductase-like protein (DsbA-L), a mitochondria-localized chaperone protein, in adipose-resident T cells, which correlates with reduced T cell mitochondrial function. T cell-specific knockout of DsbA-L enhances diet-induced thermogenesis in brown adipose tissue (BAT) and protects mice from HFD-induced obesity, hepatosteatosis, and insulin resistance. Mechanistically, DsbA-L deficiency in T cells reduces IFN-γ production and activates protein kinase A by reducing phosphodiesterase-4D expression, leading to increased BAT thermogenesis. Taken together, our study uncovers a mechanism by which T cells communicate with brown adipocytes to regulate BAT thermogenesis and whole-body energy homeostasis. Our findings highlight a therapeutic potential of targeting T cells for the treatment of over nutrition-induced obesity and its associated metabolic diseases.


Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 253 ◽  
Author(s):  
Yu-Sheng Chen ◽  
Hsuan-Miao Liu ◽  
Tzung-Yan Lee

Obesity has been shown to play a role in the pathogenesis of several forms of metabolic syndrome, including non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes. Ursodeoxycholic acid (UDCA) has been shown to possess antioxidant and anti-inflammatory properties and prevents mitochondrial dysfunction in the progression of obesity-associated diseases. The aim of the study was to evaluate the mechanisms of UDCA during obesity-linked hepatic mitochondrial dysfunction and obesity-associated adipose tissue macrophage-induced inflammation in obese mice. UDCA significantly decreased lipid droplets, reduced free fatty acids (FFA) and triglycerides (TG), improved mitochondrial function, and enhanced white adipose tissue browning in ob/ob mice. This is associated with increased hepatic energy expenditure, mitochondria biogenesis, and incorporation of bile acid metabolism (Abca1, Abcg1 mRNA and BSEP, FGFR4, and TGR5 protein). In addition, UDCA downregulated NF-κB and STAT3 phosphorylation by negative regulation of the expression of SOCS1 and SOCS3 signaling. These changes were accompanied by decreased angiogenesis, as shown by the downregulation of VEGF, VCAM, and TGF-βRII expression. Importantly, UDCA is equally effective in reducing whole body adiposity. This is associated with decreased adipose tissue expression of macrophage infiltration (CD11b, CD163, and CD206) and lipogenic capacity markers (lipofuscin, SREBP-1, and CD36). Furthermore, UDCA significantly upregulated adipose browning in association with upregulation of SIRT-1-PGC1-α signaling in epididymis adipose tissue (EWAT). These results suggest that multi-targeted therapies modulate glucose and lipid biosynthesis fluxes, inflammatory response, angiogenesis, and macrophage differentiation. Therefore, it may be suggested that UDCA treatment may be a novel therapeutic agent for obesity.


2020 ◽  
Vol 11 ◽  
Author(s):  
Katsumi Iizuka ◽  
Ken Takao ◽  
Daisuke Yabe

Carbohydrate response element-binding protein (ChREBP) plays an important role in the development of type 2 diabetes, dyslipidemia, and non-alcoholic fatty liver disease, as well as tumorigenesis. ChREBP is highly expressed in lipogenic organs, such as liver, intestine, and adipose tissue, in which it regulates the production of acetyl CoA from glucose by inducing Pklr and Acyl expression. It has recently been demonstrated that ChREBP plays a role in the conversion of gut microbiota-derived acetate to acetyl CoA by activating its target gene, Acss2, in the liver. ChREBP regulates fatty acid synthesis, elongation, and desaturation by inducing Acc1 and Fasn, elongation of long-chain fatty acids family member 6 (encoded by Elovl6), and Scd1 expression, respectively. ChREBP also regulates the formation of very low-density lipoprotein by inducing the expression of Mtp. Furthermore, it plays a crucial role in peripheral lipid metabolism by inducing Fgf21 expression, as well as that of Angptl3 and Angptl8, which are known to reduce peripheral lipoprotein lipase activity. In addition, ChREBP is involved in the production of palmitic-acid-5-hydroxystearic-acid, which increases insulin sensitivity in adipose tissue. Curiously, ChREBP is indirectly involved in fatty acid β-oxidation and subsequent ketogenesis. Thus, ChREBP regulates whole-body lipid metabolism by controlling the transcription of lipogenic enzymes and liver-derived cytokines.


2019 ◽  
Vol 116 (47) ◽  
pp. 23822-23828 ◽  
Author(s):  
Shintaro Yamaguchi ◽  
Michael P. Franczyk ◽  
Maria Chondronikola ◽  
Nathan Qi ◽  
Subhadra C. Gunawardana ◽  
...  

Nicotinamide adenine dinucleotide (NAD+) is a critical coenzyme for cellular energy metabolism. The aim of the present study was to determine the importance of brown and white adipose tissue (BAT and WAT) NAD+ metabolism in regulating whole-body thermogenesis and energy metabolism. Accordingly, we generated and analyzed adipocyte-specific nicotinamide phosphoribosyltransferase (Nampt) knockout (ANKO) and brown adipocyte-specific Nampt knockout (BANKO) mice because NAMPT is the rate-limiting NAD+ biosynthetic enzyme. We found ANKO mice, which lack NAMPT in both BAT and WAT, had impaired gene programs involved in thermogenesis and mitochondrial function in BAT and a blunted thermogenic (rectal temperature, BAT temperature, and whole-body oxygen consumption) response to acute cold exposure, prolonged fasting, and administration of β-adrenergic agonists (norepinephrine and CL-316243). In addition, the absence of NAMPT in WAT markedly reduced adrenergic-mediated lipolytic activity, likely through inactivation of the NAD+–SIRT1–caveolin-1 axis, which limits an important fuel source fatty acid for BAT thermogenesis. These metabolic abnormalities were rescued by treatment with nicotinamide mononucleotide (NMN), which bypasses the block in NAD+ synthesis induced by NAMPT deficiency. Although BANKO mice, which lack NAMPT in BAT only, had BAT cellular alterations similar to the ANKO mice, BANKO mice had normal thermogenic and lipolytic responses. We also found NAMPT expression in supraclavicular adipose tissue (where human BAT is localized) obtained from human subjects increased during cold exposure, suggesting our finding in rodents could apply to people. These results demonstrate that adipose NAMPT-mediated NAD+ biosynthesis is essential for regulating adaptive thermogenesis, lipolysis, and whole-body energy metabolism.


2012 ◽  
Vol 26 (10) ◽  
pp. 1773-1782 ◽  
Author(s):  
Li Du ◽  
Anthony P. Heaney

Abstract Adipose tissue is an important metabolic organ that is crucial for whole-body insulin sensitivity and energy homeostasis. Highly refined fructose intake increases visceral adiposity although the mechanism(s) remain unclear. Differentiation of preadipocytes to mature adipocytes is a highly regulated process that is associated with characteristic sequential changes in adipocyte gene expression. We demonstrate that fructose treatment of murine 3T3-L1 cells incubated in standard differentiation medium increases adipogenesis and adipocyte-related gene expression. We further show that the key fructose transporter, GluT5, is expressed in early-stage adipocyte differentiation but is not expressed in mature adipocytes. GluT5 overexpression or knockdown increased and decreased adipocyte differentiation, respectively, and treatment of 3T3-L1 cells with a specific GluT5 inhibitor decreased adipocyte differentiation. Epidymal white adipose tissue was reduced in GluT5−/− mice compared with wild-type mice, and mouse embryonic fibroblasts derived from GluT5−/− mice exhibited impaired adipocyte differentiation. Taken together, these results demonstrate that fructose and GluT5 play an important role in regulating adipose differentiation.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Heriberto Rodríguez-Hernández ◽  
Luis E. Simental-Mendía ◽  
Gabriela Rodríguez-Ramírez ◽  
Miguel A. Reyes-Romero

Obesity is a public health problem that has reached epidemic proportions with an increasing worldwide prevalence. The global emergence of obesity increases the risk of developing chronic metabolic disorders. Thus, it is an economic issue that increased the costs of the comorbidities associated. Moreover, in recent years, it has been demonstrated that obesity is associated with chronic systemic inflammation, this status is conditioned by the innate immune system activation in adipose tissue that promotes an increase in the production and release of pro-inflammatory cytokines that contribute to the triggering of the systemic acute-phase response which is characterized by elevation of acute-phase protein levels. On this regard, low-grade chronic inflammation is a characteristic of various chronic diseases such as metabolic syndrome, cardiovascular disease, diabetes, hypertension, non-alcoholic fatty liver disease, and some cancers, among others, which are also characterized by obesity condition. Thus, a growing body of evidence supports the important role that is played by the inflammatory response in obesity condition and the pathogenesis of chronic diseases related.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3300
Author(s):  
Xiaoxiao Wang ◽  
Huiying Rao ◽  
Feng Liu ◽  
Lai Wei ◽  
Honggui Li ◽  
...  

Obesity is a serious ongoing health problem that significantly increases the incidence of nonalcoholic fatty liver disease (NAFLD). During obesity, adipose tissue dysfunction is obvious and characterized by increased fat deposition (adiposity) and chronic low-grade inflammation. The latter has been implicated to critically promote the development and progression of NAFLD, whose advanced form non-alcoholic steatohepatitis (NASH) is considered one of the most common causes of terminal liver diseases. This review summarizes the current knowledge on obesity-related adipose dysfunction and its roles in the pathogenesis of hepatic steatosis and inflammation, as well as liver fibrosis. A better understanding of the crosstalk between adipose tissue and liver under obesity is essential for the development of new and improved preventive and/or therapeutic approaches for managing NAFLD.


Sign in / Sign up

Export Citation Format

Share Document