scholarly journals JAK/STAT Activation: A General Mechanism for Bone Development, Homeostasis, and Regeneration

2020 ◽  
Vol 21 (23) ◽  
pp. 9004
Author(s):  
Alexandra Damerau ◽  
Timo Gaber ◽  
Sarah Ohrndorf ◽  
Paula Hoff

The Janus kinase (JAK) signal transducer and activator of transcription (STAT) signaling pathway serves as an important downstream mediator for a variety of cytokines, hormones, and growth factors. Emerging evidence suggests JAK/STAT signaling pathway plays an important role in bone development, metabolism, and healing. In this light, pro-inflammatory cytokines are now clearly implicated in these processes as they can perturb normal bone remodeling through their action on osteoclasts and osteoblasts at both intra- and extra-articular skeletal sites. Here, we summarize the role of JAK/STAT pathway on development, homeostasis, and regeneration based on skeletal phenotype of individual JAK and STAT gene knockout models and selective inhibition of components of the JAK/STAT signaling including influences of JAK inhibition in osteoclasts, osteoblasts, and osteocytes.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiaoyi Hu ◽  
Jing li ◽  
Maorong Fu ◽  
Xia Zhao ◽  
Wei Wang

AbstractThe Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.


2001 ◽  
Vol 281 (6) ◽  
pp. R2048-R2058 ◽  
Author(s):  
Abram M. Madiehe ◽  
Ling Lin ◽  
Christy White ◽  
H. Doug Braymer ◽  
George A. Bray ◽  
...  

Removal of adrenal steroids by adrenalectomy (ADX) slows or reverses the development of many forms of obesity in rodents, including those that are leptin or leptin receptor deficient. Obesity is associated with hyperleptinemia and leptin resistance. We hypothesized that glucocorticoids impair leptin receptor signaling and that removal thereof would activate the Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signaling pathway. The inhibitory effect of leptin (2.5 μg icv) on food intake was enhanced in ADX rats. A combination of ribonuclease protection assays, RT-PCR, Western blots, and mobility shift assays was used to evaluate the leptin signaling pathway in whole hypothalami from sham-operated, ADX and corticosterone-replaced ADX (ADX-R) Sprague-Dawley rats that were treated acutely with either saline vehicle or leptin intracerebroventricularly. ADX increased the expression of leptin receptor mRNA, increased STAT-3 mRNA and protein levels, induced constitutive STAT-3 phosphorylation and DNA binding activity, and also reduced suppressor of cytokine signaling-3 (SOCS-3) mRNA and protein levels. ADX and leptin treatment increased STAT-3 phosphorylation, but with no concomitant increase in DNA binding activity. Leptin and ADX decreased NPY mRNA expression, but their combination did not further decrease NPY mRNA. Corticosterone supplementation of ADX rats partially reversed many of these effects. In conclusion, ADX through activation of STAT-3 and inhibition of SOCS-3 activates the JAK-STAT signaling pathway. These effects most probably explain the ability to prevent the development of obesity by removal of adrenal steroids.


2015 ◽  
Vol 14 (5) ◽  
pp. 939-948 ◽  
Author(s):  
Lei ZHANG ◽  
Qi-sheng ZUO ◽  
Dong LI ◽  
Chao LIAN ◽  
Kamel E Ahmed ◽  
...  

2019 ◽  
Vol 21 (24) ◽  
pp. 12905-12915 ◽  
Author(s):  
Yaru Wei ◽  
Zhiyang Zhang ◽  
Nai She ◽  
Xin Chen ◽  
Yuan Zhao ◽  
...  

Suppressors of cytokine signaling (SOCS) act as negative feedback regulators of the Janus kinase/signal transducer (JAK–STAT) signaling pathway by inhibiting the activity of JAK kinase.


2015 ◽  
Vol 44 (2) ◽  
pp. 662-673 ◽  
Author(s):  
Xuan Song ◽  
Zijian Zhang ◽  
Sheng Wang ◽  
Haoyang Li ◽  
Hongliang Zuo ◽  
...  

2020 ◽  
Vol 148 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Hiroshi Kanno ◽  
Tetsuya Yoshizumi ◽  
Masamichi Shinonaga ◽  
Atsuhiko Kubo ◽  
Hidetoshi Murata ◽  
...  

Author(s):  
Li Jiang ◽  
Xu-Hai Zhao ◽  
Yin-Ling Mao ◽  
Jun-Feng Wang ◽  
Hui-Jun Zheng ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) are tumor-associated biological molecules and have been found to be implicated in the progression of colorectal cancer (CRC). This study aims to examine the effects of lncRNA RP11-468E2.5 and its target genes (STAT5 and STAT6) on the biological activities of CRC cells via the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway. Methods We initially screened the GEO database for differentially expressed lncRNAs related to CRC and then made a prediction of the implicated target genes. Then we collected CRC tissues and adjacent normal tissues from 169 CRC patients. Human CRC HCT116 and SW480 cells were treated with small interference RNA (siRNA) against RP11-468E2.5, AG490 (an inhibitor of the JAK/STAT signaling pathway), or both in combination. Next, we measured the effects of RP11-468E2.5 treatment on cellular activities such as cell viability, cycle distribution and cell apoptosis, and studied interactions among RP11-468E2.5, STAT5/STAT6, and the JAK/STAT signaling pathway. Finally, an in vivo tumor formation assay was performed to observe the effect of RP11-468E2.5 on tumor growth. Results The CRC-related gene microarray data showed low expression of RP11-468E2.5 in CRC surgical specimens. However, RP11-468E2.5 was confirmed to target STAT5 and STAT6, which participate in the JAK/STAT signaling pathway. CRC tissues showed lower expression of RP11-468E2.5, higher expression of STAT5, STAT6 and of the cell cycle marker Cyclin D1 (CCND1), compared to the findings in adjacent normal tissues. The treatment of siRNA against RP11-468E2.5 increased expression of JAK2, STAT3, STAT5, STAT6, CCND1 and Bcl-2 along with the extent of STAT3, STAT5 and STAT6 phosphorylation, while lowering expression of P21 and P27. Treatment with AG490 exhibited approximately opposite effects, whereas siRNA against RP11-468E2.5 treatment stimulated CRC cell proliferation and reduced cell apoptosis, while promoting cell cycle entry; AG490 treatment reversed these results. Conclusions Altogether, we conclude that up-regulation of RP11-468E2.5 inhibits the JAK/STAT signaling pathway by targeting STAT5 and STAT6, thereby suppressing cell proliferation and promoting cell apoptosis in CRC.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Han-Chung Lee ◽  
Kai-Leng Tan ◽  
Pike-See Cheah ◽  
King-Hwa Ling

Trisomy of human chromosome 21 in Down syndrome (DS) leads to several phenotypes, such as mild-to-severe intellectual disability, hypotonia, and craniofacial dysmorphisms. These are fundamental hallmarks of the disorder that affect the quality of life of most individuals with DS. Proper brain development involves meticulous regulation of various signaling pathways, and dysregulation may result in abnormal neurodevelopment. DS brain is characterized by an increased number of astrocytes with reduced number of neurons. In mouse models for DS, the pool of neural progenitor cells commits to glia rather than neuronal cell fate in the DS brain. However, the mechanism(s) and consequences of this slight neurogenic-to-gliogenic shift in DS brain are still poorly understood. To date, Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling has been proposed to be crucial in various developmental pathways, especially in promoting astrogliogenesis. Since both human and mouse models of DS brain exhibit less neurons and a higher percentage of cells with astrocytic phenotypes, understanding the role of JAK-STAT signaling in DS brain development will provide novel insight into its role in the pathogenesis of DS brain and may serve as a potential target for the development of effective therapy to improve DS cognition.


Author(s):  
Abeer Mohbeddin ◽  
Nawar Haj Ahmed ◽  
Layla Kamareddine

Apart from its traditional role in disease control, recent body of evidence has implicated a role of the immune system in regulating metabolic homeostasis. Owing to the importance of this “immune-metabolic alignment” in dictating a state of health or disease, a proper mechanistic understanding of this alignment is crucial in opening up for promising therapeutic approaches against a broad range of chronic, metabolic, and inflammatory disorders like obesity, diabetes, and inflammatory bowel syndrome. In this project, we addressed the role of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) innate immune pathway in regulating different metabolic parameters using the Drosophila melanogaster (DM) fruit fly model organism. Mutant JAK/STAT pathway flies with a systemic knockdown of either Domeless (Dome) [domeG0282], the receptor that activates JAK/STAT signaling, or the signal-transducer and activator of transcription protein at 92E (Stat92E) [stat92EEY10528], were used. The results of the study revealed that blocking JAK/STAT signaling alters the metabolic profile of mutant flies. Both domeG0282 and stat92EEY10528 mutants had an increase in body weight, lipid deprivation from their fat body (lipid storage organ in flies), irregular accumulation of lipid droplets in the gut, systemic elevation of glucose and triglyceride levels, and differential down-regulation in the relative gene expression of different peptide hormones (Tachykinin, Allatostatin C, and Diuretic hormone 31) known to regulate metabolic homeostasis in flies. Because the JAK/STAT pathway is evolutionary conserved between invertebrates and vertebrates, our potential findings in the fruit fly serves as a platform for further immune-metabolic translational studies in more complex mammalian systems including humans.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shuchen Gu ◽  
Xin Huang ◽  
Xiangwen Xu ◽  
Yunhan Liu ◽  
Yimin Khoong ◽  
...  

Abstract Background Hypertrophic scar (HTS) is a fibroproliferative skin disorder characterized by excessive cell proliferation, migration, and extracellular matrix (ECM) deposition. The CUB and Sushi multiple domains 1 (CSMD1) has previously been identified as the key regulatory gene of hypertrophic scar by a large sample GWAS study. However, further research has not yet been conducted to verify this finding in other HTS patients and to determine the underlying mechanism. Results In this study, we verified that CSMD1 was downregulated in both HTS tissue and HTS-derived fibroblasts. The knockdown of CSMD1 resulted in enhanced migration and fibronectin1 (FN1) secretion in fibroblasts in vitro. In addition, the upstream and downstream regulatory mechanisms of CSMD1 were also investigated through microRNA (miRNA) databases screening and RNA-sequencing (RNA-seq) respectively. The screening of four common microRNA (miRNA) databases suggested that miR-190a-3p binds to the CSMD1 and may regulate its expression. We confirmed that miR-190a-3p directly targeted the CSMD1–3′-UTR using luciferase reporter assays. Furthermore, the overexpression of miR-190a-3p showed promotion of migratory activity and FN1 secretion in fibroblasts, resembling the effect of CSMD1 knockdown; whereas the knockdown of miR-190a-3p exerted the opposite effect. Finally, transcriptomic analysis showed activation of Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway in the CSMD1 knockdown fibroblasts. Conclusions This study has validated the conclusions of the previous GWAS study conducted in Chinese population. In vitro experiments have provided further evidence on the function of CSMD1 in the development of HTS, and have also revealed the underlying upstream and downstream regulating mechanisms. Additionally, the JAK/STAT signaling pathway identified using RNA-seq might provide a potential treatment approach, especially for HTS.


Sign in / Sign up

Export Citation Format

Share Document