scholarly journals Natural Killer Cell Phenotype and Functionality Affected by Exposure to Extracellular Survivin and Lymphoma-Derived Exosomes

2021 ◽  
Vol 22 (3) ◽  
pp. 1255
Author(s):  
Heather R. Ferguson Bennit ◽  
Amber Gonda ◽  
Janviere Kabagwira ◽  
Laura Oppegard ◽  
David Chi ◽  
...  

The inherent abilities of natural killer (NK) cells to recognize and kill target cells place them among the first cells with the ability to recognize and destroy infected or transformed cells. Cancer cells, however, have mechanisms by which they can inhibit the surveillance and cytotoxic abilities of NK cells with one believed mechanism for this: their ability to release exosomes. Exosomes are vesicles that are found in abundance in the tumor microenvironment that can modulate intercellular communication and thus enhance tumor malignancy. Recently, our lab has found cancer cell exosomes to contain the inhibitor of apoptosis (IAP) protein survivin to be associated with decreased immune response in lymphocytes and cellular death. The purpose of this study was to explore the effect of survivin and lymphoma-derived survivin-containing exosomes on the immune functions of NK cells. NK cells were obtained from the peripheral blood of healthy donors and treated with pure survivin protein or exosomes from two lymphoma cell lines, DLCL2 and FSCCL. RNA was isolated from NK cell samples for measurement by PCR, and intracellular flow cytometry was used to determine protein expression. Degranulation capacity, cytotoxicity, and natural killer group 2D receptor (NKG2D) levels were also assessed. Lymphoma exosomes were examined for size and protein content. This study established that these lymphoma exosomes contained survivin and FasL but were negative for MHC class I-related chains (MIC)/B (MICA/B) and TGF-β. Treatment with exosomes did not significantly alter NK cell functionality, but extracellular survivin was seen to decrease natural killer group 2D receptor (NKG2D) levels and the intracellular protein levels of perforin, granzyme B, TNF-α, and IFN-γ.

1995 ◽  
Vol 181 (3) ◽  
pp. 1133-1144 ◽  
Author(s):  
J E Gumperz ◽  
V Litwin ◽  
J H Phillips ◽  
L L Lanier ◽  
P Parham

Although inhibition of natural killer (NK) cell-mediated lysis by the class I HLA molecules of target cells is an established phenomenon, knowledge of the features of class I molecules which induce this effect remains rudimentary. Using class I alleles HLA-B*1502 and B*1513 which differ only at residues 77-83 which define the Bw4 and Bw6 serological epitopes, we tested the hypothesis that the presence of the Bw4 epitope on class I molecules determines recognition by NKB1+ NK cells. HLA-B*1513 possesses the Bw4 epitope, whereas B*1502 has the Bw6 epitope. Lysis by NKB1+ NK cell clones of transfected target cells expressing B*1513 as the only HLA-A, -B, or -C molecule was inhibited, whereas killing of transfectants expressing B*1502 was not. Addition of an an anti-NKB1 monoclonal antibody reconstituted lysis of the targets expressing B*1513, but did not affect killing of targets bearing B*1502. The inhibitory effect of B*1513 could be similarly prevented by the addition of an anti-class I monoclonal antibody. These results show that the presence of the Bw4 epitope influences recognition of HLA-B molecules by NK cells that express NKB1, and suggest that the NKB1 molecule may act as a receptor for Bw4+ HLA-B alleles. Sequences outside of the Bw4 region must also affect recognition by NKB1+ NK cells, because lysis of transfectants expressing HLA-A*2403 or A*2501, which possess the Bw4 epitope but are in other ways substantially different from HLA-B molecules, was not increased by addition of the anti-NKB1 antibody. Asparagine 86, the single site of N-linked glycosylation on class I molecules, is in close proximity to the Bw4/Bw6 region. The glycosylation site of the Bw4-positive molecule B*5801 was mutated, and the mutant molecules tested for inhibition of NKB1+ NK cells. Inhibition that could be reversed by addition of the anti-NKB1 monoclonal antibody was observed, showing the presence of the carbohydrate moiety is not essential for class I recognition by NKB1+ NK cell clones.


Blood ◽  
2006 ◽  
Vol 108 (7) ◽  
pp. 2316-2323 ◽  
Author(s):  
Stefania Marcenaro ◽  
Federico Gallo ◽  
Stefania Martini ◽  
Alessandra Santoro ◽  
Gillian M. Griffiths ◽  
...  

Abstract Natural killer (NK) cells from patients with familial hemophagocytic lymphohistiocytosis because of PRF1 (FHL2, n = 5) or MUNC13-4 (FHL3, n = 8) mutations were cultured in IL-2 prior to their use in various functional assays. Here, we report on the surface CD107a expression as a novel rapid tool for identification of patients with Munc13-4 defect. On target interaction and degranulation, FHL3 NK cells displayed low levels of surface CD107a staining, in contrast to healthy control subjects or perforin-deficient NK cells. B-EBV cell lines and dendritic cell targets reveal the FHL3 NK-cell defect, whereas highly susceptible tumor targets were partially lysed by FHL3 NK cells expressing only trace amounts of Munc13-4 protein. Perforin-deficient NK cells were completely devoid of any ability to lyse target cells. Cytokine production induced by mAb-crosslinking of triggering receptors was comparable in patients and healthy control subjects. However, when cytokine production was induced by coculture with 721.221 B-EBV cells, FHL NK cells resulted in high producers, whereas control cells were almost ineffective. This could reflect survival versus elimination of B-EBV cells (ie, the source of NK-cell stimulation) in patients versus healthy control subjects, thus mimicking the pathophysiologic scenario of FHL.


2021 ◽  
Author(s):  
Avishai Shemesh ◽  
Daniel R. Calabrese ◽  
Janice Arakawa-Hoyt ◽  
John R. Greenland ◽  
Lewis L. Lanier

The expansion of human FcεRIγ-/low (FcRγ-/low) natural killer (NK) cells accrues during viral infections; however, the molecular mechanisms regulating FcRγ expression is not well defined and can have implications for host protection and NK cell immunotherapy. Our analysis of NK cell subsets in lung transplant patients during rapamycin treatment revealed significantly lower FcRγ levels in the NK cell population. Moreover, lower FcRγ levels in healthy donors were associated with low mTORC1/C2 activity and low T-bet expression. Cell division suppression by rapamycin or TGFβ suppressed FcRγ upregulation during IL-2 receptor stimulation, whereas promoting NK cell division by co-inhibiting FOXO1 activity restored FcRγ upregulation. These results suggest that the human FcRγ-/low NK cell phenotype is associated with cell division suppression and reduced mTOR activity.


Blood ◽  
1985 ◽  
Vol 65 (1) ◽  
pp. 65-70 ◽  
Author(s):  
HW Ziegler-Heitbrock ◽  
H Rumpold ◽  
D Kraft ◽  
C Wagenpfeil ◽  
R Munker ◽  
...  

Many patients with B-type chronic lymphocytic leukemia (CLL) exhibit a profound defect in their natural killer (NK) cell activity, the basis of which is still obscure. Hence, we analyzed the NK cells from peripheral blood samples from 11 patients with CLL for phenotype and function, after removal of the leukemic cells with a monoclonal antibody (BA-1) plus complement. Phenotypic analysis of these nonleukemic cells with monoclonal antibodies (MoAbs) against NK cells revealed that the CLL patients had higher percentages of HNK-1-positive cells (23.5% compared to controls with 14.7%). In contrast, VEP13- positive cells were absent or low in seven patients (0.8% compared to controls with 11.2%) and normal in four patients (10.5%). When testing NK cell activities against K562 or MOLT 4 target cells, patients with no or minimal numbers of VEP13-positive cells were found to be deficient, while patients with normal percentages of VEP13-positive cells had NK cell activity comparable to controls. Isolation by fluorescence-activated cell sorter of HNK-1-positive cells from patients lacking VEP13-positive cells and NK cell activity indicated that the majority of the HNK-1-positive cells in these patients had the large granular lymphocyte morphology that is characteristic of NK cells. Thus, the deficiency of NK cell activity in CLL patients appears to result from the absence of cells carrying the VEP13 marker.


1992 ◽  
Vol 175 (3) ◽  
pp. 789-796 ◽  
Author(s):  
J Chehimi ◽  
S E Starr ◽  
I Frank ◽  
M Rengaraju ◽  
S J Jackson ◽  
...  

Natural killer cell stimulatory factor (NKSF), or interleukin 12 (IL-12), is a heterodimeric lymphokine produced by B cells that has multiple effects on T and NK cell functions. NKSF at concentrations as low as 0.4 pM enhances the spontaneous cytotoxic activity of peripheral blood lymphocytes (PBL) against a variety of tumor-derived target cell lines and virus-infected target cells. The combined treatment of PBL with NKSF and IL-2 results in a less than additive enhancement of cytotoxicity. NKSF enhances the cytotoxic activity of spontaneously cytotoxic CD16+CD5- NK cells and does not confer cytotoxic activity to CD16-CD5+ T cells. PBL from patients infected with human immunodeficiency virus (HIV) have significantly lower cytotoxic activity against tumor-derived target cells and virus-infected target cells than PBL from control healthy donors. Treatment of PBL from HIV-infected patients with NKSF and/or IL-2 results in an increase of NK cell cytotoxicity against both types of target cells to levels similar to or higher than those of untreated PBL from healthy donors. PBL from HIV-infected patients produce interferon gamma in response to NKSF and/or IL-2, although at levels 5- or 10-fold lower than those produced by PBL from healthy donors. The multiple biological effects of NKSF, its activity at very low molar concentrations, and its ability to synergize with other physiological stimuli suggest that NKSF/IL-12 is a lymphokine likely to have physiological importance and considerable therapeutic potential.


Blood ◽  
2007 ◽  
Vol 110 (4) ◽  
pp. 1207-1214 ◽  
Author(s):  
Jeffrey Ward ◽  
Matthew Bonaparte ◽  
Jennifer Sacks ◽  
Jacqueline Guterman ◽  
Manuela Fogli ◽  
...  

AbstractThe ability of natural killer (NK) cells to kill virus-infected cells depends on the presence of ligands for activation receptors on the target cells. We found the presence of few, if any, NKp30 and NK46 ligands on T cell blasts infected with HIV, although NKp44 ligands were found on infected cells. HIV does induce the NKG2D ligands ULBP-1, -2, and -3. These ligands are involved in triggering NK cells to kill autologous HIV-infected cells, because interfering with the interaction between NKG2D, but not NKp46, on NK cells and its ligands on HIV-infected cells drastically reduced the lysis of infected cells. Interfering with the binding of the NK-cell coreceptors NTB-A and 2B4 to their ligands also decreased destruction by NK cells. The coreceptor ligands, NTB-A and CD48, were also found to be down-regulated during the course of HIV infection. Thus, ligands for NK-cell receptors are modulated during the course of HIV infection, which may greatly alter NK cells' ability to kill the infected cells.


2011 ◽  
Vol 286 (27) ◽  
pp. 24142-24149 ◽  
Author(s):  
Stefanie Margraf-Schönfeld ◽  
Carolin Böhm ◽  
Carsten Watzl

2B4 (CD244) is an important activating receptor for the regulation of natural killer (NK) cell responses. Here we show that 2B4 is heavily and differentially glycosylated in primary human NK cells and NK cell lines. The differential glycosylation could be attributed to sialic acid residues on N- and O-linked carbohydrates. Using a recombinant fusion protein of the extracellular domain of 2B4, we demonstrate that N-linked glycosylation of 2B4 is essential for the binding to its ligand CD48. In contrast, sialylation of 2B4 has a negative impact on ligand binding, as the interaction between 2B4 and CD48 is increased after the removal of sialic acids. This was confirmed in a functional assay system, where the desialylation of NK cells or the inhibition of O-linked glycosylation resulted in increased 2B4-mediated lysis of CD48-expressing tumor target cells. These data demonstrate that glycosylation has an important impact on 2B4-mediated NK cell function and suggest that regulated changes in glycosylation during NK cell development and activation might be involved in the regulation of NK cell responses.


1999 ◽  
Vol 190 (7) ◽  
pp. 1005-1012 ◽  
Author(s):  
Mikael Eriksson ◽  
Guenther Leitz ◽  
Erik Fällman ◽  
Ove Axner ◽  
James C. Ryan ◽  
...  

Inhibitory receptors expressed on natural killer (NK) cells abrogate positive signals upon binding corresponding major histocompatibility complex (MHC) class I molecules on various target cells. By directly micromanipulating the effector–target cell encounter using an optical tweezers system which allowed temporal and spatial control, we demonstrate that Ly49–MHC class I interactions prevent characteristic cellular responses in NK cells upon binding to target cells. Furthermore, using this system, we directly demonstrate that an NK cell already bound to a resistant target cell may simultaneously bind and kill a susceptible target cell. Thus, although Ly49-mediated inhibitory signals can prevent many types of effector responses, they do not globally inhibit cellular function, but rather the inhibitory signal is spatially restricted towards resistant targets.


Blood ◽  
2005 ◽  
Vol 106 (5) ◽  
pp. 1718-1725 ◽  
Author(s):  
Domenico Mavilio ◽  
Janet Benjamin ◽  
Diana Kim ◽  
Gabriella Lombardo ◽  
Marybeth Daucher ◽  
...  

Abstract Investigations of natural killer (NK) cells in simian models of disease have been hampered by a lack of appropriate phenotypic markers and by an inadequate understanding of the regulation of NK cell activities. In the present study, a panel of monoclonal antibodies (mAbs) specific for various human NK receptors was screened for cross-reactivity with NK cells from rhesus macaques and pigtailed macaques. Flow cytometric analyses using anti-human NKG2A and anti-human NKp80 mAbs individually, and particularly in combination with anti-CD16 mAb, allowed for the identification of the entire NK cell population in both species. NK cells in monkeys were generally identified by negative selection of peripheral blood mononuclear cells (PBMCs) for the absence of T-cell, B-cell, and monocyte markers. mAb-mediated ligation of NKp80 induced NK cell cytotoxicity, while in the case of NKG2A it displayed a clear capability to inhibit the lysis of target cells by NK cells from macaques, as well as from humans. This new phenotypic and functional characterization of NKG2A and NKp80 in rhesus and pigtailed macaque NK cells provides a new approach in the analysis of their innate immune system. (Blood. 2005;106:1718-1725)


Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2561-2564 ◽  
Author(s):  
Evdoxia Hatjiharissi ◽  
Lian Xu ◽  
Daniel Ditzel Santos ◽  
Zachary R. Hunter ◽  
Bryan T. Ciccarelli ◽  
...  

The presence of valine (V) at position 158 of FcγRllla (CD16) is known to improve clinical response to rituximab in indolent non-Hodgkin lymphoma (NHL). Little is known about the basic mechanisms for this observation. We examined natural killer (NK) cells from healthy donors representing the FcγRIIIa-158 polymorphic subgroups (V/V, V/F, and F/F) for gene transcript and cell surface CD16 expression, rituximab binding, and rituximab-dependent NK cell-mediated cytotoxicity. We observed higher levels of FcγRIIIa transcripts among individuals with the FcγRIIIa-158 V/V versus V/F or F/F genotype (P < .001); increased cell surface CD16 expression by quantitative flow cytometry on NK cells from individuals expressing at least one valine at FcγRIIIa-158 versus F/F (P = .029); as well as augmented rituximab binding and rituximab-mediated, antibody-dependent cellular cytotoxicity (ADCC). These results suggest that individuals expressing at least one valine at FcγRIIIa-158 might, in part, have better clinical outcomes due to increased CD16 expression, rituximab binding, and rituximab-mediated ADCC.


Sign in / Sign up

Export Citation Format

Share Document