scholarly journals Kinetically Equivalent Functionality and Reactivity of Commonly Used Biocompatible Polyurethane Crosslinking Agents

2021 ◽  
Vol 22 (8) ◽  
pp. 4059
Author(s):  
Lajos Nagy ◽  
Bence Vadkerti ◽  
Csilla Lakatos ◽  
Péter Pál Fehér ◽  
Miklós Zsuga ◽  
...  

In this paper, the kinetics of the reaction of phenyl isocyanate with crosslinking agents such as sucrose, sorbitol, and glycerol are reported. Crosslinking agents were used in high molar excess to isocyanate to obtain pseudo-first-order rate dependencies, and the reaction products were separated by high-performance liquid chromatography and detected by UV spectroscopy and mass spectrometry. It was found that the glycerol’s primary hydroxyl groups were approximately four times reactive than the secondary ones. However, in the case of sorbitol, the two primary OH groups were found to be the most reactive, and the reactivity of hydroxyl groups decreased in the order of kOH(6)(8.43) > kOH(1)(6.91) > kOH(5)(1.19) > kOH(2)(0.98) > kOH(3)(0.93) > kOH(4)(0.64), where the numbers in the subscript and in the brackets denote the position of OH groups and the pseudo-first-order rate constants, respectively. The Atomic Polar Tenzor (APT) charges of OH groups and dipole moments of monosubstituted sorbitol derivatives calculated by density functional theory (DFT) also confirmed the experimental results. On the other hand, the reactions of phenyl isocyanate with crosslinking agents were also performed using high excess isocyanate in order to determine the number of OH-groups participating effectively in the crosslinking process. However, due to the huge number of derivatives likely formed in these latter reactions, a simplified reaction scheme was introduced to describe the resulting product versus reaction time distributions detected by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). Based on the results, the kinetically equivalent functionality (fk) of each crosslinking agent was determined and found to be 2.26, 2.6, and 2.96 for glycerol, sorbitol, and sucrose, respectively.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4373
Author(s):  
Hans-Heinrich Limbach ◽  
Simone Baumgärtner ◽  
Roland Franke ◽  
Ferdinand Männle ◽  
Gerd Scherer ◽  
...  

Using dynamic liquid-state NMR spectroscopy a degenerate double proton tautomerism was detected in tetramethyl reductic acid (TMRA) dissolved in toluene-d8 and in CD2Cl2. Similar to vitamin C, TMRA belongs to the class of reductones of biologically important compounds. The tautomerism involves an intramolecular HH transfer that interconverts the peripheric and the central positions of the two OH groups. It is slow in the NMR time scale around 200 K and fast at room temperature. Pseudo-first-order rate constants of the HH transfer and of the HD transfer after suitable deuteration were obtained by line shape analyses. Interestingly, the chemical shifts were found to be temperature dependent carrying information about an equilibrium between a hydrogen bonded dimer and a monomer forming two weak intramolecular hydrogen bonds. The structures of the monomer and the dimer are discussed. The latter may consist of several rapidly interconverting hydrogen-bonded associates. A way was found to obtain the enthalpies and entropies of dissociation, which allowed us to convert the pseudo-first-order rate constants of the reaction mixture into first-order rate constants of the tautomerization of the monomer. Surprisingly, these intrinsic rate constants were the same for toluene-d8 and CD2Cl2, but in the latter solvent more monomer is formed. This finding is attributed to the dipole moment of the TMRA monomer, compensated in the dimer, and to the larger dielectric constant of CD2Cl2. Within the margin of error, the kinetic HH/HD isotope effects were found to be of the order of 3 but independent of temperature. That finding indicates a stepwise HH transfer involving a tunnel mechanism along a double barrier pathway. The Arrhenius curves were described in terms of the Bell–Limbach tunneling model.



1981 ◽  
Vol 27 (5) ◽  
pp. 753-755 ◽  
Author(s):  
P A Adams ◽  
M C Berman

Abstract We describe a simple, highly reproducible kinetic technique for precisely measuring temperature in spectrophotometric systems having reaction cells that are inaccessible to conventional temperature probes. The method is based on the temperature dependence of pseudo-first-order rate constants for the acid-catalyzed hydrolysis of N-o-tolyl-D-glucosylamine. Temperatures of reaction cuvette contents are measured with a precision of +/- 0.05 degrees C (1 SD).



2020 ◽  
Vol 26 (5) ◽  
pp. 332-340
Author(s):  
Rong Zhang ◽  
Ping-Ping Li ◽  
Ge-Ge Gu ◽  
Wei-Min Ren

Metal complexes have extensive applications in catalysis, however, the efficient evaluation of Lewis acidity of metal complexes is still a challenge. Herein, we report a method by using electrospray ionization mass spectrometry (ESI-MS) to evaluate the Lewis acidity of metal complexes in the presence of a reference Lewis base, in which the value of the Lewis acidity can be quantized by the bond dissociation energy (BDE) of the resultant Lewis acid-base pairs. Using this method, the Lewis acidity of tetradentate Schiff-base metal complexes (designated as salenMX), a class of common metal complexes in the homogeneous catalysis, was studied in detail. For the salenM(III)X complexes (M = Al, Cr, Fe, Co), the Lewis acidity tendency is Al > Cr > Fe > Co due to a strong affinity between the Al complex and the reference Lewis base while a weak affinity concerning on the Co complex. Additionally, the effect of ligand steric and electronic nature on the Lewis acidity was studied by using Co complex. Furthermore, density functional theory (DFT) was employed to calculate the BDE, which consists with the results obtained from ESI-MS. The ESI-MS method provides a convenient and efficient method for evaluating the Lewis acidity of metal complexes.



1990 ◽  
Vol 68 (2) ◽  
pp. 476-479
Author(s):  
Donald C. Wigfield ◽  
Douglas M. Goltz

The kinetics of the reconstitution reaction of apotyrosinase with copper (II) ions are reported. The reaction is pseudo first order with respect to apoenzyme and the values of these pseudo first order rate constants are reported as a function of copper (II) concentration. Two copper ions bind to apoenzyme, and if the second one is rate limiting, the kinetically relevant copper concentration is the copper originally added minus the amount used in binding the first copper ion to enzyme. This modified copper concentration is linearly related to the magnitude of the pseudo first order rate constant, up to a copper concentration of 1.25 × 10−4 M (10-fold excess), giving a second order rate constant of 7.67 × 102 ± 0.93 × 102 M−1∙s−1.Key words: apotyrosinase, copper, tyrosinase.



1975 ◽  
Vol 28 (5) ◽  
pp. 1133 ◽  
Author(s):  
S Chan ◽  
S Tan

The pseudo first-order rate constants for the mercury(II)-induced aquation of trans-[Co(Hdmg)2(NH3)Cl] (Hdmg = dimethylglyoximate ion) have been measured in aqueous and aqueous ethanol solutions (ethanol- water mole ratio 1 : 5.1) containing various excess amounts of mercury(II)ion at 273.2 K. Association constants of the complex formed with mercury(II) ion and rate constants for dissociation of the activated complex in both solutions have been calculated. The kinetic results are discussed in terms of formation of an activated complex Co-C1-Hg, followed by a simple rate-determining aquation in which HgCl+ acts as the leaving group.



2019 ◽  
Vol 97 (5) ◽  
pp. 387-391 ◽  
Author(s):  
Jiayi Sun ◽  
Min Zhang ◽  
Changyan Sun

This manuscript reports the synthesis and fluorescent chemosensor property of a Schiff base derivative, 4-[(2-hydroxy-1-naphthyl) methylideneamino]benzoic acid (H2L). The fluorescence spectrum shows that H2L exhibits a highly selective and sensitive recognition for Al3+ ions in N,N′-dimethylformamide/water (DMF/H2O, 1/1, v/v). The fluorescence titration experiments and electrospray ionization mass spectrometry (ESI–MS) show that H2L and Al3+ ions form a 1:1 complex. 1H NMR titration results show that H2L coordinates to Al3+ ions with carboxylate, hydroxyl groups, and imine groups and the probable sensing mechanism may be the excited-state intramolecular proton transfer (ESIPT) process.



1993 ◽  
Vol 293 (2) ◽  
pp. 537-544 ◽  
Author(s):  
H J Lee ◽  
S H Chiou ◽  
G G Chang

The argininosuccinate lyase activity of duck delta-crystallin was inactivated by diethyl pyrocarbonate at 0 degrees C and pH 7.5. The inactivation followed pseudo-first-order kinetics after appropriate correction for the decomposition of the reagent during the modification period. The plot of the observed pseudo-first-order rate constant versus diethyl pyrocarbonate concentration in the range of 0.17-1.7 mM was linear and went through the origin with a second-order rate constant of 1.45 +/- 0.1 M-1.s-1. The double-logarithmic plot was also linear, with slope of 1.13, which suggested a 1:1 stoichiometry for the reaction between diethyl pyrocarbonate and delta-crystallin. L-Arginine, L-norvaline or L-citrulline protected the argininosuccinate lyase activity of delta-crystallin from diethyl pyrocarbonate inactivation. The dissociation constants for the delta-crystallin-L-arginine and delta-crystallin-L-citrulline binary complexes, determined by the protection experiments, were 4.2 +/- 0.2 and 0.12 +/- 0.04 mM respectively. Fumarate alone had no protective effect. However, fumarate plus L-arginine gave synergistic protection with a ligand binding interacting factor of 0.12 +/- 0.02. The double-protection data conformed to a random Uni Bi kinetic mechanism. Fluorescence-quenching studies indicated that the modified delta-crystallin had minimum, if any, conformational changes as compared with the native delta-crystallin. Inactivation of the enzyme activity was accompanied by an increasing absorbance at 240 nm of the protein. The absorption near 280 nm did not change. Treatment of the modified protein with hydroxylamine regenerated the enzyme activity to the original level. These results strongly indicated the modification of an essential histidine residue. Calculation from the 240 nm absorption changes indicated that only one histidine residue per subunit was modified by the reagent. This super-active histidine residue has a pKa value of approximately 6.8 and acts as a general acid-base catalyst in the enzyme reaction mechanism. Our experimental data are compatible with an E1cB mechanism [Raushel (1984) Arch. Biochem. Biophys. 232, 520-525] for the argininosuccinate lyase with the essential histidine residue close to the arginine-binding domain of delta-crystallin. L-Citrulline, after binding to this domain, might form an extra hydrogen bond with the essential histidine residue.



2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
M. Niyaz Khan ◽  
Yoke-Leng Sim ◽  
Azhar Ariffin

The values of pseudo-first-order rate constants (kobs) for alkaline hydrolysis of1, obtained at 1.0 mM NaOH and withinCmEnT(total concentration ofCmEn) range of 3.0–5.0 mM forC12E23and 10–20 mM forC18E20, fail to obey pseudophase micellar (PM) model. The values of the fraction of near irreversibleCmEnmicellar trapped1molecules (FIT1) vary in the range ~0–0.75 forC12E23and ~0–0.83 forC18E20under such conditions. The values ofFIT1become 1.0 at ≥10 mMC12E23and 50 mMC18E20. Kinetic analysis of the observed data at ≥10 mMC12E23shows near irreversible micellar entrapment of1molecules under such conditions.



Sign in / Sign up

Export Citation Format

Share Document