scholarly journals Structure, Assembly and Function of Cuticle from Mechanical Perspective with Special Focus on Perianth

2021 ◽  
Vol 22 (8) ◽  
pp. 4160
Author(s):  
Joanna Skrzydeł ◽  
Dorota Borowska-Wykręt ◽  
Dorota Kwiatkowska

This review is devoted to the structure, assembly and function of cuticle. The topics are discussed from the mechanical perspective and whenever the data are available a special attention is paid to the cuticle of perianth organs, i.e., sepals, petals or tepals. The cuticle covering these organs is special in both its structure and function and some of these peculiarities are related to the cuticle mechanics. In particular, strengthening of the perianth surface is often provided by a folded cuticle that functionally resembles profiled plates, while on the surface of the petal epidermis of some plants, the cuticle is the only integral continuous layer. The perianth cuticle is distinguished also by those aspects of its mechanics and development that need further studies. In particular, more investigations are needed to explain the formation and maintenance of cuticle folding, which is typical for the perianth epidermis, and also to elucidate the mechanical properties and behavior of the perianth cuticle in situ. Gaps in our knowledge are partly due to technical problems caused by very small thicknesses of the perianth cuticle but modern tools may help to overcome these obstacles.

Author(s):  
Scott M. Woodley ◽  
Graeme M. Day ◽  
R. Catlow

We review the current techniques used in the prediction of crystal structures and their surfaces and of the structures of nanoparticles. The main classes of search algorithm and energy function are summarized, and we discuss the growing role of methods based on machine learning. We illustrate the current status of the field with examples taken from metallic, inorganic and organic systems. This article is part of a discussion meeting issue ‘Dynamic in situ microscopy relating structure and function’.


1996 ◽  
Vol 62 (12) ◽  
pp. 4641-4647 ◽  
Author(s):  
A Schramm ◽  
L H Larsen ◽  
N P Revsbech ◽  
N B Ramsing ◽  
R Amann ◽  
...  

Author(s):  
Andrew Poppe ◽  
Angus W. MacDonald III

This chapter describes a cognitive neuroscience approach to understanding the psychological and neural processes that underlie personality and behavior. It explicates the utility of the cognitive neuroscience approach and the fundamental principles of the methods and how to interpret the findings. The chapter reviews the different neuroimaging tools and approaches that can be used to investigate brain structure and function. In doing so, it provides detailed information about what each method measures and how issues to consider when evaluating these measurements and their functional significance. The chapter provides the reader an appreciation of how understanding brain structure and function in vivo can serve as a bridge between molecular/genetic and symptom-based data to enrich the pathophysiology of personality disorders.


Author(s):  
Edward G. Fey

In the past few years, considerable advances have been made regarding the structure and function of the nuclear matrix. In the first half of this presentation, the field of nuclear matrix research will be summarized. Emphasis will be placed on those studies where molecular interactions are demonstrated in situ utilizing high resolution light and/or electron microscopy. Studies demonstrating the role of the nuclear matrix in DNA synthesis and replication, RNA transcription and processing, and the binding of matrix attachment regions to specific nuclear matrix proteins will be summarized.


2012 ◽  
Vol 109 (38) ◽  
pp. 15366-15371 ◽  
Author(s):  
Craig R. McClain ◽  
Andrew P. Allen ◽  
Derek P. Tittensor ◽  
Michael A. Rex

With frigid temperatures and virtually no in situ productivity, the deep oceans, Earth’s largest ecosystem, are especially energy-deprived systems. Our knowledge of the effects of this energy limitation on all levels of biological organization is very incomplete. Here, we use the Metabolic Theory of Ecology to examine the relative roles of carbon flux and temperature in influencing metabolic rate, growth rate, lifespan, body size, abundance, biomass, and biodiversity for life on the deep seafloor. We show that the relative impacts of thermal and chemical energy change across organizational scales. Results suggest that individual metabolic rates, growth, and turnover proceed as quickly as temperature-influenced biochemical kinetics allow but that chemical energy limits higher-order community structure and function. Understanding deep-sea energetics is a pressing problem because of accelerating climate change and the general lack of environmental regulatory policy for the deep oceans.


2005 ◽  
Vol 105 (3-4) ◽  
pp. 464-468 ◽  
Author(s):  
Igor V. Koptyug ◽  
Anna A. Lysova ◽  
Renad Z. Sagdeev ◽  
Valery A. Kirillov ◽  
Alexander V. Kulikov ◽  
...  

2013 ◽  
Vol 357-360 ◽  
pp. 1093-1096
Author(s):  
En Yu Sun ◽  
Wan Li Bi

Intelligent material is a kind of multifunctional composite bionic design, can sense environmental conditions, through the sensor network, interest will be provided to the control system, to respond to take action. Self-diagnosis and through self-growth, in situ composite regeneration mechanism of system failure, repair some local damage or destroy; to the changing external environment and conditions, timely adjust its structure and function. Because of its relative to the performance of traditional materials with special excellent, with broad prospects for development.


2003 ◽  
Vol 15 (4) ◽  
pp. 927-968 ◽  
Author(s):  
ALLAN L. REISS ◽  
CHRISTOPHER C. DANT

Analyzing gene–brain–behavior linkages in childhood neurodevelopmental disorders, a research approach called “behavioral neurogenetics,” has provided new insights into understanding how both genetic and environmental factors contribute to complex variations in typical and atypical human development. Research into etiologically more homogeneous disorders, such as fragile X syndrome, in particular, allows the use of more precise metrics of genetic risk so that we can more fully understand the complex pathophysiology of childhood onset neurodevelopmental disorders. In this paper, we review our laboratory's behavioral neurogenetics research by examining gene–brain–behavior relationships in fragile X syndrome, a single-gene disorder that has become a well-characterized model for studying neurodevelopmental dysfunction in childhood. Specifically, we examine genetic influences, trajectories of cognition and behavior, variation in brain structure and function, and biological and environmental factors that influence developmental and cognitive outcomes of children with fragile X. The converging approaches across these multilevel scientific domains indicate that fragile X, which arises from disruption of a single gene leading to the loss of a specific protein, is associated with a cascade of aberrations in neurodevelopment, resulting in a central nervous system that is suboptimal with respect to structure and function. In turn, structural and functional brain alterations lead to early disruption in emotion, cognition, and behavior in the child with fragile X. The combination of molecular genetics, neuroimaging, and behavioral research have advanced our understanding of the linkages between genetic variables, neurobiological measures, IQ, and behavior. Our research and that of others demonstrates that neurobehavior and neurocognition, genetics, and neuroanatomy are all different views of the same intriguing biological puzzle, a puzzle that today is rapidly emerging into a more complete picture of the intricate linkages among gene, brain, and behavior in developing children. Understanding the complex multilevel scientific perspective involved in fragile X will also contribute to our understanding of normal development by highlighting developmental events throughout the life span, thereby helping us to delineate the boundaries of pathology.


Sign in / Sign up

Export Citation Format

Share Document