scholarly journals Metabolic Disturbances in Rat Sublines with Constitutionally Altered Serotonin Homeostasis

2021 ◽  
Vol 22 (10) ◽  
pp. 5400
Author(s):  
Maja Kesić ◽  
Petra Baković ◽  
Ranko Stojković ◽  
Jasminka Štefulj ◽  
Lipa Čičin-Šain

Central and peripheral serotonin (5HT) have opposing functions in the regulation of energy homeostasis. Both increasing 5HT signaling in the brain and decreasing 5HT signaling in the periphery have been proposed as potential treatments for obesity. This study investigates the relationship between constitutionally high or low 5HT activity and systemic net energy balance. Two sublines of rats with high and low whole-body 5HT tone, obtained by selective breeding for platelet 5HT parameters, were examined for fat accumulation in different white adipose tissue (WAT) depots, glucose/insulin tolerance, blood metabolic parameters, and expression of various metabolic genes. High-5HT animals, unlike their low-5HT counterparts, developed widespread intra-abdominal obesity associated with glucose and insulin intolerance, which worsened with age. They also had elevated blood glucose and lipid parameters but showed no significant changes in circulating leptin, resistin, and adipsin levels. Surprisingly, adiponectin levels were increased in plasma but reduced in the WAT of high-5HT rats. A limited number of metabolic genes belonging to different functional classes showed differential expression in WAT of high-5HT compared to low-5HT rats. Overall, a constitutive increase in 5HT tone is associated with a positive energy balance acting through subtle dysregulation of a broad spectrum of metabolic pathways.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Roger Maldonado-Ruiz ◽  
Lizeth Fuentes-Mera ◽  
Alberto Camacho

Central nervous system (CNS) senses energy homeostasis by integrating both peripheral and autonomic signals and responding to them by neurotransmitters and neuropeptides release. Although it is previously considered an immunologically privileged organ, we now know that this is not so. Cells belonging to the immune system, such as B and T lymphocytes, can be recruited into the CNS to face damage or infection, in addition to possessing resident immunological cells, called microglia. In this way, positive energy balance during obesity promotes an inflammatory state in the CNS. Saturated fatty acids from the diet have been pointed out as powerful candidates to trigger immune response in peripheral system and in the CNS. However, how central immunity communicates to peripheral immune response remains to be clarified. Recently there has been a great interest in the neuropeptides, POMC derived peptides, ghrelin, and leptin, due to their capacity to suppress or induce inflammatory responses in the brain, respectively. These may be potential candidates to treat different pathologies associated with autoimmunity and inflammation. In this review, we will discuss the role of lipotoxicity associated with positive energy balance during obesity in proinflammatory response in microglia, B and T lymphocytes, and its modulation by neuropeptides.


2019 ◽  
Vol 20 (11) ◽  
pp. 2707 ◽  
Author(s):  
Qi Zhu ◽  
Bradley J. Glazier ◽  
Benjamin C. Hinkel ◽  
Jingyi Cao ◽  
Lin Liu ◽  
...  

Despite tremendous research efforts to identify regulatory factors that control energy metabolism, the prevalence of obesity has been continuously rising, with nearly 40% of US adults being obese. Interactions between secretory factors from adipose tissues and the nervous system innervating adipose tissues play key roles in maintaining energy metabolism and promoting survival in response to metabolic challenges. It is currently accepted that there are three types of adipose tissues, white (WAT), brown (BAT), and beige (BeAT), all of which play essential roles in maintaining energy homeostasis. WAT mainly stores energy under positive energy balance, while it releases fuels under negative energy balance. Thermogenic BAT and BeAT dissipate energy as heat under cold exposure to maintain body temperature. Adipose tissues require neural and endocrine communication with the brain. A number of WAT adipokines and BAT batokines interact with the neural circuits extending from the brain to cooperatively regulate whole-body lipid metabolism and energy homeostasis. We review neuroanatomical, histological, genetic, and pharmacological studies in neuroendocrine regulation of adipose function, including lipid storage and mobilization of WAT, non-shivering thermogenesis of BAT, and browning of BeAT. Recent whole-tissue imaging and transcriptome analysis of differential gene expression in WAT and BAT yield promising findings to better understand the interaction between secretory factors and neural circuits, which represents a novel opportunity to tackle obesity.


2021 ◽  
pp. 1-25
Author(s):  
Xiaoping Jing ◽  
Yamin Guo ◽  
Allan Degen ◽  
Wenji Wang ◽  
Jingpeng Kang ◽  
...  

Abstract Seasonal energy intake of Tibetan sheep on the harsh Qinghai-Tibetan Plateau (QTP) fluctuates greatly and is often well below maintenance requirements. The aim of this study was to gain insight into how the hypothalamus regulates energy homeostasis in Tibetan and Small-tailed Han sheep. We compared Tibetan and Small-tailed Han sheep (n=24 of each breed), which were offered one of four diets that differed in digestible energy (DE) densities: 8.21, 9.33, 10.45 and 11.57 MJ/kg dry matter. Sheep were weighed every two weeks, and it was assumed that the change in body weight reflected the change in energy balance. The arcuate nucleus of the hypothalamus in Tibetan sheep had greater protein expressions of neuropeptide Y (NPY) and agouti-related peptide (AgRP) when in negative energy balance, but lesser protein expressions of proopiomelanocortin (POMC) and cocaine and amphetamine-regulated transcript (CART) when in positive energy balance than Small-tailed Han sheep. As a result, Tibetan sheep had a lesser body weight (BW) loss when in negative energy balance and stored more energy and gained more BW when in positive energy balance than Small-tailed Han sheep with the same dietary intake. Moreover, in the hypothalamic AMPK regulation pathway, Tibetan sheep had greater AMPKα2 protein expression than Small-tailed Han sheep, which supported the premise of a better ability to regulate energy homeostasis and better growth performance. These differences in the hypothalamic NPY/AgRP, POMC/CART and AMPK pathways between breeds conferred an advantage to the Tibetan over Small-tailed Han sheep to cope with low energy intake on the harsh QTP.


2015 ◽  
Vol 75 (3) ◽  
pp. 319-327 ◽  
Author(s):  
David J. Clayton ◽  
Lewis J. James

The belief that breakfast is the most important meal of day has been derived from cross-sectional studies that have associated breakfast consumption with a lower BMI. This suggests that breakfast omission either leads to an increase in energy intake or a reduction in energy expenditure over the remainder of the day, resulting in a state of positive energy balance. However, observational studies do not imply causality. A number of intervention studies have been conducted, enabling more precise determination of breakfast manipulation on indices of energy balance. This review will examine the results from these studies in adults, attempting to identify causal links between breakfast and energy balance, as well as determining whether consumption of breakfast influences exercise performance. Despite the associations in the literature, intervention studies have generally found a reduction in total daily energy intake when breakfast is omitted from the daily meal pattern. Moreover, whilst consumption of breakfast supresses appetite during the morning, this effect appears to be transient as the first meal consumed after breakfast seems to offset appetite to a similar extent, independent of breakfast. Whether breakfast affects energy expenditure is less clear. Whilst breakfast does not seem to affect basal metabolism, breakfast omission may reduce free-living physical activity and endurance exercise performance throughout the day. In conclusion, the available research suggests breakfast omission may influence energy expenditure more strongly than energy intake. Longer term intervention studies are required to confirm this relationship, and determine the impact of these variables on weight management.


Binge Eating ◽  
2020 ◽  
pp. 59-67 ◽  
Author(s):  
Michael R. Lowe ◽  
Leora L. Haller ◽  
Simar Singh ◽  
Joanna Y. Chen

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Irene Cimino ◽  
Debra Rimmington ◽  
Y. C. Loraine Tung ◽  
Katherine Lawler ◽  
Pierre Larraufie ◽  
...  

AbstractNeuronatin (Nnat) has previously been reported to be part of a network of imprinted genes downstream of the chromatin regulator Trim28. Disruption of Trim28 or of members of this network, including neuronatin, results in an unusual phenotype of a bimodal body weight. To better characterise this variability, we examined the key contributors to energy balance in Nnat+/−p mice that carry a paternal null allele and do not express Nnat. Consistent with our previous studies, Nnat deficient mice on chow diet displayed a bimodal body weight phenotype with more than 30% of Nnat+/−p mice developing obesity. In response to both a 45% high fat diet and exposure to thermoneutrality (30 °C) Nnat deficient mice maintained the hypervariable body weight phenotype. Within a calorimetry system, food intake in Nnat+/−p mice was hypervariable, with some mice consuming more than twice the intake seen in wild type littermates. A hyperphagic response was also seen in Nnat+/−p mice in a second, non-home cage environment. An expected correlation between body weight and energy expenditure was seen, but corrections for the effects of positive energy balance and body weight greatly diminished the effect of neuronatin deficiency on energy expenditure. Male and female Nnat+/−p mice displayed subtle distinctions in the degree of variance body weight phenotype and food intake and further sexual dimorphism was reflected in different patterns of hypothalamic gene expression in Nnat+/−p mice. Loss of the imprinted gene Nnat is associated with a highly variable food intake, with the impact of this phenotype varying between genetically identical individuals.


2019 ◽  
Vol 125 ◽  
pp. 10005
Author(s):  
Yoyon Wahyono ◽  
H. Hadiyanto ◽  
Mochamad Arief Budihardjo ◽  
Widayat

Energy balance analysis study for the production process of biodiesel needs to be done to find out whether a production process of biodiesel activity has a surplus energy or minus energy. This study aims to analyse the balance of energy of the plantation of palm, production of palm oil, and production process units of biodiesel with the life cycle assessment in Banyuasin - Indonesia. The results of this study indicate that the largest energy input in the plantation of palm, production of palm oil, and production process units of biodiesel sequentially is the use of urea as N-fertilizer, electricity, and methanol. The value of NEB and NER in the production process of palm biodiesel sequentially is 5871 MJ and 1.17. Finally, the production process of palm biodiesel in Banyuasin area has a positive energy balance. The activity of production of palm biodiesel is proper to operate because it produces an energy surplus.


Sign in / Sign up

Export Citation Format

Share Document