scholarly journals Antibody-Based Therapeutics for Atherosclerosis and Cardiovascular Diseases

2021 ◽  
Vol 22 (11) ◽  
pp. 5770
Author(s):  
Eunhye Ji ◽  
Sahmin Lee

Cardiovascular disease is the leading cause of death worldwide, and its prevalence is increasing due to the aging of societies. Atherosclerosis, a type of chronic inflammatory disease that occurs in arteries, is considered to be the main cause of cardiovascular diseases such as ischemic heart disease or stroke. In addition, the inflammatory response caused by atherosclerosis confers a significant effect on chronic inflammatory diseases such as psoriasis and rheumatic arthritis. Here, we review the mechanism of action of the main causes of atherosclerosis such as plasma LDL level and inflammation; furthermore, we review the recent findings on the preclinical and clinical effects of antibodies that reduce the LDL level and those that neutralize the cytokines involved in inflammation. The apolipoprotein B autoantibody and anti-PCSK9 antibody reduced the level of LDL and plaques in animal studies, but failed to significantly reduce carotid inflammation plaques in clinical trials. The monoclonal antibodies against PCSK9 (alirocumab, evolocumab), which are used as a treatment for hyperlipidemia, lowered cholesterol levels and the incidence of cardiovascular diseases. Antibodies that neutralize inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-17, and IL-12/23) have shown promising but contradictory results and thus warrant further research.

2004 ◽  
Vol 92 (08) ◽  
pp. 419-424 ◽  
Author(s):  
Stefan Blankenberg ◽  
Christine Espinola-Klein ◽  
Joern Dopheide ◽  
Christoph Bickel ◽  
Karl Lackner ◽  
...  

SummaryMonocytes play a central role in the inflammatory disease atherosclerosis. CD14+CD16+ monocytes are considered proinflammatory monocytes, as they have an increased capacity to produce proinflammatory cytokines, such as TNF-α, and are elevated in various inflammatory diseases. We hypothesized that patients with coronary artery disease (CAD) have increased levels of CD14+CD16+ monocytes, and that CD14+CD16+ monocytes are associated with inflammation markers. We investigated CD14+CD16+ monocytes in 247 patients with CAD and 61 control subjects using flow cytometry. In addition serum concentrations of TNF-α, IL-6, and Hs-CRP were assessed. Patients with CAD had higher levels of CD14+CD16+ monocytes than controls (13.6% versus 11.4%; p<0.001). Logistic regression analysis including quartiles of CD14+CD16+ monocytes showed that CD14+CD16+ monocytes were associated with prevalence of CAD (OR 4.9, 95% CI 2.5–19.1, for subjects in the fourth quartile in comparison to subjects in the first quartile). The association between CD14+CD16+ monocytes and CAD remained independently significant after adjustment for most potential confounders (OR 5.0, 95% CI 1.2-20.0). Serum concentrations of TNF-α were elevated in subjects within the highest quartiles of CD14+CD16+ monocytes (p=0.018). Our study showed that increased numbers of CD14+CD16+ monocytes are associated with coronary atherosclerosis and TNF-α. In accordance, recent animal studies suggest a possibly important role of these monocytes in the development of atherosclerosis.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Keisa W Mathis

Systemic lupus erythematosus (SLE) is an autoimmune disorder with prevalent hypertension. Previous studies using a genetic mouse model of SLE (NZBWF1) suggest chronic inflammation is an important contributor to SLE hypertension. A novel neuroimmune pathway involving the α7 subunit of the nicotinic acetylcholine receptor (α7nAChR) suppresses splenic cytokine release and reduces systemic inflammation upon stimulation. To test whether activation of this ‘cholinergic anti-inflammatory pathway’ at the level of the α7nAChR attenuates the development of hypertension during SLE, female SLE and control (NZW) mice were infused with nicotine hydrogen tartrate salt (2 mg/kg/day, SC) or saline for 7 days. Nicotine-treated SLE mice had lower splenic protein expression of TNF-α and IL-6 (normalized to β-actin) relative to saline-treated SLE mice (1.09±0.06 vs. 1.37±0.06 and 0.36±0.04 vs. 0.55±0.10; all p<0.05), suggesting efficacy of the therapy. Mean arterial pressure (MAP; mmHg) was increased in SLE mice compared to controls (140±4 vs. 114±2; p<0.001). Nicotine prevented the rise in MAP in SLE mice (129±4; p=0.022), but not controls (121±3). This protection from hypertension coincided with a 46±5% lower renal cortical TNF-α in nicotine-treated SLE mice compared to saline-treated SLE mice (0.39±0.04 vs. 0.73±0.18), which is important because it has been previously shown that renal TNF-α plays a mechanistic role in the development of hypertension during SLE. Because nicotine acts on both ganglionic and peripheral cholinergic receptors, in a subsequent study mice were administered the selective α7nAChR agonist, PNU-282987 (0.38 mg/kg/day, IP), or vehicle for 28 days. PNU-282987-treated SLE mice had lower splenic protein expression of TNF-α and IL-6 relative to saline-treated SLE mice (0.33±0.01 vs. 0.54±0.03 and 0.40±0.08 vs. 0.86±0.05; all p<0.05). MAP was increased in SLE mice compared to controls (138±2 vs. 122±5). PNU-282987 prevented the rise in MAP in SLE mice (128±4), but not controls (125±5). These data suggest the anti-inflammatory effects of cholinergic agonists may protect from SLE hypertension and that the cholinergic anti-inflammatory pathway may be an important target in hypertensive patients with chronic inflammatory diseases.


2019 ◽  
Vol 217 (1) ◽  
Author(s):  
Pascale Zwicky ◽  
Susanne Unger ◽  
Burkhard Becher

Chronic inflammatory diseases like psoriasis, Crohn’s disease (CD), multiple sclerosis (MS), rheumatoid arthritis (RA), and others are increasingly recognized as disease entities, where dysregulated cytokines contribute substantially to tissue-specific inflammation. A dysregulation in the IL-23/IL-17 axis can lead to inflammation of barrier tissues, whereas its role in internal organ inflammation remains less clear. Here we discuss the most recent developments in targeting IL-17 for the treatment of chronic inflammation in preclinical models and in patients afflicted with chronic inflammatory diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amritpal Dhaliwal ◽  
Felicity R. Williams ◽  
Jonathan I. Quinlan ◽  
Sophie L. Allen ◽  
Carolyn Greig ◽  
...  

Abstract Background Several chronic inflammatory diseases co-exist with and accelerate sarcopenia (reduction in muscle strength, function and mass) and negatively impact on both morbidity and mortality. There is currently limited research on the extent of sarcopenia in such conditions, how to accurately assess it and whether there are generic or disease-specific mechanisms driving sarcopenia. Therefore, this study aims to identify potential mechanisms driving sarcopenia within chronic inflammatory disease via a multi-modal approach; in an attempt to help define potential interventions for future use. Methods This prospective cohort study will consist of a multi-modal assessment of sarcopenia and its underlying mechanisms. Recruitment will target three chronic inflammatory diseases: chronic liver disease (CLD) (n=50), with a subset of NAFLD (n=20), inflammatory bowel disease (IBD) (n=50) and rheumatoid arthritis (RA) (n=50) both before and after therapeutic intervention. In addition, 20 age and sex matched healthy individuals will be recruited for comparison. Participants will undergo 4 assessment visits at weeks 0, 2, 12 and 24. Visits will consist of the following assessments: blood tests, anthropometrics, functional assessment, quadriceps muscle imaging, actigraphy, quality of life questionnaires, food diary collection and muscle biopsy of the vastus lateralis (at weeks 2 and 24 only). In addition, stool and urine samples will be collected for future microbiome and metabolomics analysis. Discussion This is the first study to use a multi-modal assessment model to phenotype sarcopenia in these chronic inflammatory diseases. We hope to identify generic as well as disease-specific mechanisms driving sarcopenia. We appreciate that these cohorts do require separate standards of care treatments which limit comparison between groups. Ethics and dissemination The study is approved by the Health Research Authority - West Midlands Solihull Research Ethics Service Committee Authority (REC reference: 18/WM/0167). Recruitment commenced in January 2019 and will continue until July 2021. The study was halted in March 2020 and again in January 2021 with the COVID-19 pandemic. The findings will be disseminated through peer-reviewed publications and conference presentations. All data will be stored on a secure server. Trial registration ClinicalTrials.gov Identifier: NCT04734496


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3336
Author(s):  
Ilona Elisabeth Kammerl ◽  
Claudia Flexeder ◽  
Stefan Karrasch ◽  
Barbara Thorand ◽  
Margit Heier ◽  
...  

Dysfunction of the immunoproteasome has been implicated in cardiovascular and pulmonary diseases. Its potential as a biomarker for predicting disease stages, however, has not been investigated so far and population-based analyses on the impact of sex and age are missing. We here analyzed the activity of all six catalytic sites of the proteasome in isolated peripheral blood mononuclear cells obtained from 873 study participants of the KORA FF4 study using activity-based probes. The activity of the immuno- and standard proteasome correlated clearly with elevated leukocyte counts of study participants. Unexpectedly, we observed a strong sex dimorphism for proteasome activity with significantly lower immunoproteasome activity in women. In aging, almost all catalytic activities of the proteasome were activated in aged women while maintained upon aging in men. We also noted distinct sex-related activation patterns of standard and immunoproteasome active sites in chronic inflammatory diseases such as diabetes, cardiovascular diseases, asthma, or chronic obstructive pulmonary disease as determined by multiple linear regression modeling. Our data thus provides a conceptual framework for future analysis of immunoproteasome function as a bio-marker for chronic inflammatory disease development and progression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jorge H. Tabares-Guevara ◽  
Julio C. Jaramillo ◽  
Laura Ospina-Quintero ◽  
Christian A. Piedrahíta-Ochoa ◽  
Natalia García-Valencia ◽  
...  

One of the interventional strategies to reestablish the immune effector/regulatory balance, that is typically altered in chronic inflammatory diseases (CID), is the reinforcement of endogenous immunomodulatory pathways as the one triggered by interleukin (IL)-10. In a recent work, we demonstrated that the subcutaneous (sc) administration of an IL-10/Treg-inducing small molecule-based formulation, using a repetitive microdose (REMID) treatment strategy to preferentially direct the effects to the regional immune system, delays the progression of atherosclerosis. Here we investigated whether the same approach using other IL-10-inducing small molecule, such as the safe, inexpensive, and widely available polyphenol curcumin, could induce a similar protective effect in two different CID models. We found that, in apolipoprotein E deficient mice, sc treatment with curcumin following the REMID strategy induced atheroprotection that was not consequence of its direct systemic lipid-modifying or antioxidant activity, but instead paralleled immunomodulatory effects, such as reduced proatherogenic IFNγ/TNFα-producing cells and increased atheroprotective FOXP3+ Tregs and IL-10-producing dendritic and B cells. Remarkably, when a similar strategy was used in the neuroinflammatory model of experimental autoimmune encephalomyelitis (EAE), significant clinical and histopathological protective effects were evidenced, and these were related to an improved effector/regulatory cytokine balance in restimulated splenocytes. The essential role of curcumin-induced IL-10 for neuroprotection was confirmed by the complete abrogation of the clinical effects in IL-10-deficient mice. Finally, the translational therapeutic prospection of this strategy was evidenced by the neuroprotection observed in mice starting the treatment one week after disease triggering. Collectively, results demonstrate the power of a simple natural IL-10-inducing small molecule to tackle chronic inflammation, when its classical systemic and direct pharmacological view is shifted towards the targeting of regional immune cells, in order to rationally harness its immunopharmacological potential. This shift implies that many well-known IL-10-inducing small molecules could be easily reformulated and repurposed to develop safe, innovative, and accessible immune-based interventions for CID.


2021 ◽  
Author(s):  
Ilya Korsunsky ◽  
Kevin Wei ◽  
Mathilde Pohin ◽  
Edy Y. Kim ◽  
Francesca Barone ◽  
...  

SummaryPro-inflammatory fibroblasts are critical to pathogenesis in rheumatoid arthritis, inflammatory bowel disease, interstitial lung disease, and Sjögren’s syndrome, and represent a novel therapeutic target for chronic inflammatory disease. However, the heterogeneity of fibroblast phenotypes, exacerbated by the lack of a common cross-tissue taxonomy, has limited the understanding of which pathways are shared by multiple diseases. To investigate, we profiled patient-derived fibroblasts from inflamed and non-inflamed synovium, intestine, lung, and salivary glands with single-cell RNA-sequencing. We integrated all fibroblasts into a multi-tissue atlas to characterize shared and tissue-specific phenotypes. Two shared clusters, CXCL10+CCL19+ immune-interacting and SPARC+COL3A1+ vascular-interacting fibroblasts were expanded in all inflamed tissues and additionally mapped to dermal analogues in a public atopic dermatitis atlas. We further confirmed these human pro-inflammatory fibroblasts in animal models of lung, joint, and intestinal inflammation. This work represents the first cross-tissue, single-cell fibroblast atlas revealing shared pathogenic activation states across four chronic inflammatory diseases.


Medicines ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 122 ◽  
Author(s):  
Toshiaki Ara ◽  
Sachie Nakatani ◽  
Kenji Kobata ◽  
Norio Sogawa ◽  
Chiharu Sogawa

The oral inflammatory diseases are divided into two types: acute and chronic inflammatory diseases. In this review, we summarize the biological efficacy of herbal medicine, natural products, and their active ingredients against acute and chronic inflammatory diseases in the oral region, especially stomatitis and periodontitis. We review the effects of herbal medicines and a biscoclaurin alkaloid preparation, cepharamthin, as a therapy against stomatitis, an acute inflammatory disease. We also summarize the effects of herbal medicines and natural products against periodontitis, a chronic inflammatory disease, and one of its clinical conditions, alveolar bone resorption. Recent studies show that several herbal medicines such as kakkonto and ninjinto reduce LPS-induced PGE 2 production by human gingival fibroblasts. Among herbs constituting these herbal medicines, shokyo (Zingiberis Rhizoma) and kankyo (Zingiberis Processum Rhizoma) strongly reduce PGE 2 production. Moreover, anti-osteoclast activity has been observed in some natural products with anti-inflammatory effects used against rheumatoid arthritis such as carotenoids, flavonoids, limonoids, and polyphenols. These herbal medicines and natural products could be useful for treating oral inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document