scholarly journals UV Light-Generated Superhydrophilicity of a Titanium Surface Enhances the Transfer, Diffusion and Adsorption of Osteogenic Factors from a Collagen Sponge

2021 ◽  
Vol 22 (13) ◽  
pp. 6811
Author(s):  
Masako Tabuchi ◽  
Kosuke Hamajima ◽  
Miyuki Tanaka ◽  
Takeo Sekiya ◽  
Makoto Hirota ◽  
...  

It is a significant challenge for a titanium implant, which is a bio-inert material, to recruit osteogenic factors, such as osteoblasts, proteins and blood effectively when these are contained in a biomaterial. The objective of this study was to examine the effect of ultraviolet (UV)-treatment of titanium on surface wettability and the recruitment of osteogenic factors when they are contained in an atelocollagen sponge. UV treatment of a dental implant made of commercially pure titanium was performed with UV-light for 12 min immediately prior to the experiments. Superhydrophilicity on dental implant surfaces was generated with UV-treatment. The collagen sponge containing blood, osteoblasts, or albumin was directly placed on the dental implant. Untreated implants absorbed only a little blood from the collagen sponge, while the UV-treated implants absorbed blood rapidly and allowed it to spread widely, almost over the entire implant surface. Blood coverage was 3.5 times greater for the UV-treated implants (p < 0.001). Only 6% of the osteoblasts transferred from the collagen sponge to the untreated implants, whereas 16% of the osteoblasts transferred to the UV-treated implants (p < 0.001). In addition, a weight ratio between transferred albumin on the implant and measured albumin adsorbed on the implant was 17.3% in untreated implants and 38.5% in UV-treated implants (p < 0.05). These results indicated that UV treatment converts a titanium surface into a superhydrophilic and bio-active material, which could recruite osteogenic factors even when they were contained in a collagen sponge. The transfer and subsequent diffusion and adsorption efficacy of UV-treated titanium surfaces could be useful for bone formation when titanium surfaces and osteogenic factors are intervened with a biomaterial.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuyi Wu ◽  
Jianmeng Xu ◽  
Leiyan Zou ◽  
Shulu Luo ◽  
Run Yao ◽  
...  

AbstractPeri-implant infection is one of the biggest threats to the success of dental implant. Existing coatings on titanium surfaces exhibit rapid decrease in antibacterial efficacy, which is difficult to promisingly prevent peri-implant infection. Herein, we report an N-halamine polymeric coating on titanium surface that simultaneously has long-lasting renewable antibacterial efficacy with good stability and biocompatibility. Our coating is powerfully biocidal against both main pathogenic bacteria of peri-implant infection and complex bacteria from peri-implantitis patients. More importantly, its antibacterial efficacy can persist for a long term (e.g., 12~16 weeks) in vitro, in animal model, and even in human oral cavity, which generally covers the whole formation process of osseointegrated interface. Furthermore, after consumption, it can regain its antibacterial ability by facile rechlorination, highlighting a valuable concept of renewable antibacterial coating in dental implant. These findings indicate an appealing application prospect for prevention and treatment of peri-implant infection.


2012 ◽  
Vol 586 ◽  
pp. 39-44 ◽  
Author(s):  
Yan Hua Zheng ◽  
Jin Bo Li ◽  
Xuan Yong Liu ◽  
Jiao Sun

Insufficience of osteogenesis and antimicrobial effect have been still impacted the long term clinical success rate of dental implants. A nanostructured titanium surface prepared by hydrothermal treatment with H2O2 was evaluated on its osteoblastic viability and antibacterial effect. Samples were divided into 2 groups: untreated pure titanium surface (Ti) and a nanostructured titanium surface (NT). The antibacterial activities against S.mutans and C.albicans were measured by film applicator coating assay, as well as the live/dead bacteria stain. The osteoblastic viability was investigated by SEM and MTT assay. Results showed that the active microbia on NT was reduced at 24h (P<0.05) significantly according to the live/dead bacteria stain and film applicator coating assay, which could also enhance the osteoblast viability. Therefore, a nanostructured titanium surface exhibits good antibacterial activity on S.mutans and C.albicans, and promoting osteoblast viability, which will be a potential kind of dental implant material.


2009 ◽  
Vol 24 (1_suppl) ◽  
pp. 169-182 ◽  
Author(s):  
Wang Tianshi ◽  
Zhang Renji ◽  
Yan Yongnian

In this study, a hydroxyapatite (HA) was coated on a pure titanium surface by means of a complex oxidation and hydrothermal treatment. First an anodic oxidation was done on the titanium plates, followed by micro-arc oxidation. The HA-coated specimens and pure titanium specimens were immersed in SLB for 1, 5, and 10 days, respectively, to study their electrochemical behavior. The corrosion currents of HA-coated specimens were less than pure titanium specimens. This indicated that HA coating prevented surface metal ions of the implant from dissolving, thereby, reducing the tissue toxicity. The cytotoxic effect on fibroblasts L929 cells was measured by cell counting after being seeded for 2, 4, 8, 12, and 24 h. The number of surface cell attachments on the HA-coated specimens was much greater than on pure titanium specimens. The morphology of the cells on the HA coating had normal shapes and spread well with some cells climbing onto surface pores while cells on the pure titanium were oval shaped. The results confirm that the cell compatibility on HA-coated ion titanium surfaces is much better than pure titanium.


2007 ◽  
Vol 539-543 ◽  
pp. 517-522 ◽  
Author(s):  
Barbara Nebe ◽  
Frank Luethen ◽  
Regina Lange ◽  
Ulrich Beck

The contact of a cell on the biomaterial’s surface is mediated by its adhesion components. The topography of titanium surfaces influences these adhesion components of osteoblasts, e.g. the integrins, the adapter proteins and the actin cytoskeleton. In our current experiments we were interested in why osteoblasts were strongly aligned to the grooves of a structured pure titanium surface (grade 2). The titanium was characterized by EIS to get insights in the electro-chemically active surface. We used MG-63 human bone cells, cultured in DMEM with 10% FCS at 37°C. For protein adsorption the titanium discs were incubated for 24h with complete medium containing soluble fibronectin at 37°C. Interestingly, only in the grooves cells adhered and were aligned and this is not dependent on the gravitation. The cell adhesion seems to depend on the protein adsorption of fibronectin which we could find to be adsorbed exclusively in the valleys. We speculate that there are local differences in electro-chemical characteristics of this structured titanium surface.


Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 80 ◽  
Author(s):  
Chun-Yang Su ◽  
Qing Zhou ◽  
Cheng-Hong Zou

Photocatalysis-enhanced surface deposition on titanium surfaces for biomedical applications is investigated in this work. Immersion tests of commercially pure titanium (CP-Ti) pieces in a simulated body fluid adding bovine serum albumin (BSA) under ultraviolet (UV) irradiation in situ are carried out. The morphologies of deposition are characterized by SEM and stereo imaging microscopy, and the quantity and composition of the deposition is examined by SEM, energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy. The results show a deposition layer with thickness 89 μm is produced on 600 °C heat-treated specimens. An irradiation pattern of lighting/dark repeated results in more deposition on heat-treated CP-Ti. It is confirmed that a mixture of anatase and rutile phases generated on 600 °C heat-treated specimens has enhanced photocatalysis. The decomposition of BSA by photocatalysis, a possible product of nitrite also results in enhanced deposition on Ti. EDS analysis shows large reduction of carbon in the deposition on UV-light exposed surfaces compared to no UV-light-exposed surfaces. Furthermore, C–H bond decreases and C–C, Ca–O, and P–O bond increases are found on photoactivated surfaces. The deposition produced by this method is expected to be useful for applications to biomaterials with high bioactivity.


2011 ◽  
Vol 295-297 ◽  
pp. 491-495
Author(s):  
Xiao Feng Pang ◽  
Yong Huang ◽  
Xian Yu Cao

The nano-hydroxyapatite/zirconia coating of double layers on surface of titanium allay materials have been prepared using electrochemical method. The features and structures of the composite coating materials are studied and analyzed by the Scanning electron microscope (SEM) and EDAX measurement. The results show that nano-HA/ZrO2 are densely and uniformly deposited on the surface of titanium allays in ionic form, a stable gradient composite coating, in which the nano-zirconium oxides (ZrO2) are homogeneously distributed between HA and titanium surfaces, are obtained. The tensile strength experiment exhibits that the adhesion or combined strength of the coating with the titanium surface is higher and about 17GPa, which manifests the nano-HA/ ZrO2 coating is successfully combined on the surface of the titanium allay materials. The biological experiments represent that this material can be used in repairing of bone and medical dental- implant of teeth.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 51
Author(s):  
Takahiro Shuto ◽  
Yuichi Mine ◽  
Seicho Makihira ◽  
Hiroki Nikawa ◽  
Takanori Wachi ◽  
...  

Fluoride and abrasives in toothpastes may cause corrosion and deterioration of the titanium used for implants and other prostheses. The purpose of this study was to investigate how the presence or absence and types of fluoride and abrasives affected the titanium surface texture. Brushing with toothpastes was performed on pure-titanium discs using an abrasive testing machine. Unprocessed titanium discs without brushing were used as control samples. Surface roughness, color, and gloss of titanium were measured and the differences compared with the control were analyzed. Additionally, titanium surfaces and abrasives in toothpastes were observed using a scanning electron microscope to compare the surface texture of each sample. Some toothpastes (abrasive+) significantly increased the difference in surface roughness, color, and gloss, compared with ultrapure water. Toothpaste (fluoride+/abrasive+) that had many polygonal abrasive particles led to the largest color differences and exhibited notable scratches and a larger number of contaminant- or corrosion-like black spots. In contrast, brushing with toothpaste without fluoride or abrasives (fluoride−/abrasive−) caused little change to the titanium surface. These results suggest that both fluoride and abrasives in toothpaste used for brushing may be factors that affect surface texture and corrosion resistance of titanium.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ze-hua Tang ◽  
Shan Su ◽  
Yao Liu ◽  
Wen-qing Zhu ◽  
Song-mei Zhang ◽  
...  

In this study, a novel modification strategy was established to synthesize a zinc-incorporated nano-cluster structure on titanium surface in a two-step hydrothermal reaction, and the osteogenic differentiation of osteoblasts and human bone marrow mesenchymal cells (hMSCs) was studied in the presence of this synthesized nanostructure. Analyses of the surface topography and elemental composition revealed that the zinc-containing cluster-like nanostructure was successfully prepared on the titanium surface. By altering the reaction time, three surface modifications were established. The three modified titanium surfaces had improved hydrophilicity and could continuously release zinc ions in a controlled manner. In vitro study displayed that three modified titanium surfaces, especially the samples prepared by reacting for 15 min, exhibited enhanced cell adhesion, proliferation, and osteogenic differentiation compared to the pure titanium surface. The study therefore conclude that the zinc-incorporated nano-cluster modification of titanium surface through a simple procedure can establish an enhanced osteogenic microenvironment and exhibit a potential strategy of titanium surface modification to accelerate the dental implant osseointegration.


1997 ◽  
Vol 60 (6) ◽  
pp. 639-643 ◽  
Author(s):  
FUENG-LIN KUO ◽  
JOHN B. CAREY ◽  
STEVEN C. RICKE

The effects were investigated of 254-nm UV radiation on populations of Salmonella typhimurium, aerobes, and molds on the shells of eggs. In the first experiment, the CFU of attached S. typhimurium cells on unwashed clean shell eggs were determined after 0, 1, 3, 5, and 7 min of UV treatment (620 μW/cm2) on both ends of the egg. All UV treatments significantly reduced S. typhimurium CFU (P &lt; .01). UVtreatment (620 μW/cm2) in 1-min alternating light and dark cycles for 5 min (three light and two dark) was compared to 0, 3, and 5 min of UV treatment. No significant differences in microbial populations were observed among light and dark cycles and the other UV treatments. In a subsequent experiment, the same UV treatments were utilized to evaluate photoreactivation. After UV exposure, eggs were exposed to 1 h of fluorescent light or I h of darkness or cultured immediately. S. typhimurium CFU were significantly (P &lt; .01) reduced by the UV treatments. However, no significant differences between microbial populations exposed to UV treatment and UV radiation plus photoreactivation were detected. For studies of aerobic bacteria and molds, different UV treatment times (0, 15, and 30 min) at the intensity of 620 μW/cm2 and different intensities (620, 1350, and 1720 μW/cm2) for 15 min were evaluated. Mold CFU per egg were either 0 or 1 for all UV treatments and a 99% reduction of CFU of aerobic bacteria per egg were observed for all UV treatments. It appears from these studies that UV light can significantly reduce populations of S. typhimurium, aerobes, and molds on shell eggs.


2021 ◽  
Vol 22 (3) ◽  
pp. 1441
Author(s):  
Antonio Scarano ◽  
Tiziana Orsini ◽  
Fabio Di Carlo ◽  
Luca Valbonetti ◽  
Felice Lorusso

Background—the graphene-doping procedure represents a useful procedure to improve the mechanical, physical and biological response of several Polymethyl methacrylate (PMMA)-derived polymers and biomaterials for dental applications. The aim of this study was to evaluate osseointegration of Graphene doped Poly(methyl methacrylate) (GD-PMMA) compared with PMMA as potential materials for dental implant devices. Methods—eighteen adult New Zealand white male rabbits with a mean weight of approx. 3000 g were used in this research. A total of eighteen implants of 3.5 mm diameter and 11 mm length in GD-PMMA and eighteen implants in PMMA were used. The implants were placed into the articular femoral knee joint. The animals were sacrificed after 15, 30 and 60 days and the specimens were evaluated by µCT and histomorphometry. Results—microscopically, all 36 implants, 18 in PMMA and 18 in DG-PMMA were well-integrated into the bone. The implants were in contact with cortical bone along the upper threads, while the lower threads were in contact with either newly formed bone or with marrow spaces. The histomorphometry and µCT evaluation showed that the GP-PMMA and PMMA implants were well osseointegrated and the bone was in direct contact with large portions of the implant surfaces, including the space in the medullary canal. Conclusions—in conclusion, the results suggest that GD-PMMA titanium surfaces enhance osseointegration in rabbit femurs. This encourages further research to obtain GD-PMMA with a greater radiopacity. Also, further in vitro and vivo animal studies are necessary to evaluate a potential clinical usage for dental implant applications.


Sign in / Sign up

Export Citation Format

Share Document