scholarly journals Increased Protein Encapsulation in Polymersomes with Hydrophobic Membrane Anchoring Peptides in a Scalable Process

2021 ◽  
Vol 22 (13) ◽  
pp. 7134
Author(s):  
Michael Mertz ◽  
Kathrin Castiglione

Hollow vesicles made from a single or double layer of block-copolymer molecules, called polymersomes, represent an important technological platform for new developments in nano-medicine and nano-biotechnology. A central aspect in creating functional polymersomes is their combination with proteins, especially through encapsulation in the inner cavity of the vesicles. When producing polymersomes by techniques such as film rehydration, significant proportions of the proteins used are trapped in the vesicle lumen, resulting in high encapsulation efficiencies. However, because of the difficulty of scaling up, such methods are limited to laboratory experiments and are not suitable for industrial scale production. Recently, we developed a scalable polymersome production process in stirred-tank reactors, but the statistical encapsulation of proteins resulted in fairly low encapsulation efficiencies of around 0.5%. To increase encapsulation in this process, proteins were genetically fused with hydrophobic membrane anchoring peptides. This resulted in encapsulation efficiencies of up to 25.68%. Since proteins are deposited on the outside and inside of the polymer membrane in this process, two methods for the targeted removal of protein domains by proteolysis with tobacco etch virus protease and intein splicing were evaluated. This study demonstrates the proof-of-principle for production of protein-functionalized polymersomes in a scalable process.

2017 ◽  
Vol 10 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Ashraf F. El-Baz ◽  
Hesham A. El-Enshasy ◽  
Yousseria M. Shetaia ◽  
Hoda Mahrous ◽  
Nor Zalina Othman ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 11-17
Author(s):  
Siti Nur Jannah ◽  
Yumna Rahmadias Hanifa ◽  
Adi Budi Utomo ◽  
Ashar Kurnia Dian Prambodo ◽  
Arina Tri Lunggani

Marine organism is one of the riches in the ocean of Indonesia. The benefits of sea use for new products produced are widely used and have high market demand. Enzymes that have marine interests have unique properties and have good benefits for industry. This study aims to isolate the bacteria that have symbionts with Padina sp and determine the potential of the enzyme hydrolase produced by these bacteria. Isolation is done by the spread plate method. Pure isolates obtained were then tested for the potential of the enzyme hydrolase on selective media. Clear zone measurements are performed to determine which bacterial isolates are good for enzyme production. The results obtained by 6 isolates of pure bacteria, all of which include Gram negative bacteria that form bacilli. All isolates had the ability to produce different Protease, Lipase, Amylase and Cellulase enzymes. The enzymes obtained from these symbiotic bacteria are expected to be used for industrial-scale production in Indonesia. In addition, the presence of this symbiont bacteria is able to reduce the level of exploitation of Padina sp and contribute to preserving the marine ecosystem.


1992 ◽  
Vol 12 (11) ◽  
pp. 5050-5058
Author(s):  
J Dahl ◽  
U Thathamangalam ◽  
R Freund ◽  
T L Benjamin

The functional importance of the two clusters of positively charged amino acids which flank the hydrophobic membrane-anchoring sequence of polyomavirus middle T (mT) protein has been investigated by using site-directed mutagenesis. A clear asymmetry was apparent. No effect on transformation was seen following multiple alterations or complete removal of the cluster at the carboxyl end of the protein. In contrast, a single substitution replacing the first arginine amino terminal to the hydrophobic stretch with glutamic acid, but not with lysine, histidine, or methionine, produced a partially transformation-defective mutant with a novel phenotype. This mutant failed to confer anchorage-independent growth on F111 established rat embryo fibroblasts but induced foci with altered morphology compared with wild-type mT. Biochemical studies on this mutant revealed that F111 clones expressing levels of mutant mT equivalent to those of wild-type controls showed a 65% reduction in pp60c-src activation and an 87% reduction in mT-associated phosphatidylinositol 3-kinase activity. However, F111 clones expressing seven times more mutant mT than did wild-type controls showed equal or greater levels of kinase activities yet remained incompletely transformed. Possible mechanisms involving this transformation-sensitive region of mT are discussed.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1197 ◽  
Author(s):  
Warren Blunt ◽  
David Levin ◽  
Nazim Cicek

Microbial polyhydroxyalkanoates (PHAs) are promising biodegradable polymers that may alleviate some of the environmental burden of petroleum-derived polymers. The requirements for carbon substrates and energy for bioreactor operations are major factors contributing to the high production costs and environmental impact of PHAs. Improving the process productivity is an important aspect of cost reduction, which has been attempted using a variety of fed-batch, continuous, and semi-continuous bioreactor systems, with variable results. The purpose of this review is to summarize the bioreactor operations targeting high PHA productivity using pure cultures. The highest volumetric PHA productivity was reported more than 20 years ago for poly(3-hydroxybutryate) (PHB) production from sucrose (5.1 g L−1 h−1). In the time since, similar results have not been achieved on a scale of more than 100 L. More recently, a number fed-batch and semi-continuous (cyclic) bioreactor operation strategies have reported reasonably high productivities (1 g L−1 h−1 to 2 g L−1 h−1) under more realistic conditions for pilot or industrial-scale production, including the utilization of lower-cost waste carbon substrates and atmospheric air as the aeration medium, as well as cultivation under non-sterile conditions. Little development has occurred in the area of fully continuously fed bioreactor systems over the last eight years.


1989 ◽  
pp. 41-49 ◽  
Author(s):  
O. Albrecht ◽  
T. Ginnai ◽  
A. Harrington ◽  
D. Marr-Leisy ◽  
V. Rodov

Arts ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Nora K. Donoghue

Evidence for industrial scale production of numerous manufacturing processes has been attested in all phases of occupation at Poggio Civitate (Murlo). A subset of these, tools for the production of textiles and fibers, indicates that textile crafts were manufactured on a large scale as a part of a centralized and organized industry. These industrialized practices occurred within and around the monumental seventh and sixth century BCE complexes which displayed architectural decoration bearing iconographic themes that served to secure the positions of the aristocratic elites. This paper investigates the stamped decoration present on rocchetti and its relationship to the architectural decoration present on the monumental structures of the site. As small moveable objects used by members of the community, rocchetti present an opportunity to investigate the movement of elite images through the non-elite population of a community and their reception of aristocratic ideology presented in monumental structures.


2011 ◽  
Vol 31 (2) ◽  
pp. 406-411
Author(s):  
Adriane da Silva ◽  
João Zitkoski ◽  
Marcio Antônio Mazutti ◽  
Altemir Mossi ◽  
José Vladimir Oliveira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document