scholarly journals Risk Factors for Retinal Ganglion Cell Distress in Glaucoma and Neuroprotective Potential Intervention

2021 ◽  
Vol 22 (15) ◽  
pp. 7994
Author(s):  
Stefania Vernazza ◽  
Francesco Oddone ◽  
Sara Tirendi ◽  
Anna Maria Bassi

Retinal ganglion cells (RGCs) are a population of neurons of the central nervous system (CNS) extending with their soma to the inner retina and with their axons to the optic nerve. Glaucoma represents a group of neurodegenerative diseases where the slow progressive death of RGCs results in a permanent loss of vision. To date, although Intra Ocular Pressure (IOP) is considered the main therapeutic target, the precise mechanisms by which RGCs die in glaucoma have not yet been clarified. In fact, Primary Open Angle Glaucoma (POAG), which is the most common glaucoma form, also occurs without elevated IOP. This present review provides a summary of some pathological conditions, i.e., axonal transport blockade, glutamate excitotoxicity and changes in pro-inflammatory cytokines along the RGC projection, all involved in the glaucoma cascade. Moreover, neuro-protective therapeutic approaches, which aim to improve RGC degeneration, have also been taken into consideration.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abeer Aldbass ◽  
Musarat Amina ◽  
Nawal M. Al Musayeib ◽  
Ramesa Shafi Bhat ◽  
Sara Al-Rashed ◽  
...  

AbstractExcess glutamate in the central nervous system may be a major cause of neurodegenerative diseases with gradual loss and dysfunction of neurons. Primary or secondary metabolites from medicinal plants and algae show potential for treatment of glutamate-induced excitotoxicity. Three plant extracts were evaluated for impact on glutamate excitotoxicity-induced in primary cultures of retinal ganglion cells (RGC). These cells were treated separately in seven groups: control; Plicosepalus. curviflorus treated; Saussurea lappa treated; Cladophora glomerate treated. Cells were treated independently with 5, 10, 50, or 100 µg/ml of extracts of plant or alga material, respectively, for 2 h. Glutamate-treated cells (48 h with 5, 10, 50, or 100 µM glutamate); and P. curviflorus/glutamate; S. lappa/glutamate; C. glomerata/glutamate [pretreatment with extract for 2 h (50 and 100 µg/ml) before glutamate treatment with 100 µM for 48 h]. Comet and MTT assays were used to assess cell damage and cell viability. The number of viable cells fell significantly after glutamate exposure. Exposure to plant extracts caused no notable effect of viability. All tested plants extracts showed a protective effect against glutamate excitotoxicity-induced RGC death. Use of these extracts for neurological conditions related to excitotoxicity and oxidative stress might prove beneficial.


2020 ◽  
Author(s):  
Abeer Al-Dbass ◽  
Musarat Amina ◽  
Nawal Al Musayeib ◽  
Ramesa Shafi Bhat ◽  
Sara Al-Rashed ◽  
...  

Abstract Excess glutamate in the central nervous system may be a major cause of neurodegenerative diseases with gradual loss and dysfunction of neurons. Primary or secondary metabolites from medicinal plants and algae show potential for treatment of glutamate-induced excitotoxicity. Three plant extracts were evaluated for impact on glutamate excitotoxicity-induced in primary cultures of retinal ganglion cells. These cells were treated separately in seven groups: control; Plicosepalus. curviflorus treated; Saussurea lappa treated; Cladophora glomerate treated. Cells were treated independently with 5, 10, 50, or 100 µg/ml of extracts of plant or alga material, respectively, for 2 h. Glutamate-treated cells (48 h with 5, 10, 50, or 100 µM glutamate); and P. curviflorus/glutamate; S. lappa/glutamate; C. glomerata/glutamate [pretreatment with extract for 2 h (50 and 100 µg/ml) before glutamate treatment with 100 µM for 48 h]. Comet and MTT assays were used to assess cell damage and cell viability. The number of viable cells fell significantly after glutamate exposure. Exposure to plant extracts caused no notable effect of viability. All tested plants extracts showed a protective effect against glutamate excitotoxicity-induced RGC death. Use of these extracts for neurological conditions related to excitotoxicity and oxidative stress might prove beneficial.


2020 ◽  
Vol 20 (13) ◽  
pp. 1142-1153 ◽  
Author(s):  
Sreyashi Chandra ◽  
Md. Tanjim Alam ◽  
Jhilik Dey ◽  
Baby C. Pulikkaparambil Sasidharan ◽  
Upasana Ray ◽  
...  

Background: The central nervous system (CNS) known to regulate the physiological conditions of human body, also itself gets dynamically regulated by both the physiological as well as pathological conditions of the body. These conditions get changed quite often, and often involve changes introduced into the gut microbiota which, as studies are revealing, directly modulate the CNS via a crosstalk. This cross-talk between the gut microbiota and CNS, i.e., the gut-brain axis (GBA), plays a major role in the pathogenesis of many neurodegenerative disorders such as Parkinson’s disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and Huntington’s disease (HD). Objective: We aim to discuss how gut microbiota, through GBA, regulate neurodegenerative disorders such as PD, AD, ALS, MS and HD. Methods: In this review, we have discussed the present understanding of the role played by the gut microbiota in neurodegenerative disorders and emphasized the probable therapeutic approaches being explored to treat them. Results: In the first part, we introduce the GBA and its relevance, followed by the changes occurring in the GBA during neurodegenerative disorders and then further discuss its role in the pathogenesis of these diseases. Finally, we discuss its applications in possible therapeutics of these diseases and the current research improvements being made to better investigate this interaction. Conclusion: We concluded that alterations in the intestinal microbiota modulate various activities that could potentially lead to CNS disorders through interactions via the GBA.


2019 ◽  
Author(s):  
Jin-Jin Ma ◽  
Ren-Jie Xu ◽  
Xin Ju ◽  
Wei-Hua Wang ◽  
Zong-Ping Luo ◽  
...  

SummaryAlthough several genes have been identified to promote axon regeneration in the central nervous system, our understanding of the molecular mechanisms by which mammalian axon regeneration is regulated is still limited and fragmented. Here by using sensory axon and optic nerve regeneration as model systems, we revealed an unexpected role of telomerase reverse transcriptase (TERT) in regulation of axon regeneration. We also provided strong evidence that TERT and p53 acted downstream of c-Myc to control sensory axon regeneration. More importantly, overexpression of p53 in sensory neurons and retinal ganglion cells (RGCs) was sufficient to promote sensory axon and optic never regeneration, respectively. The study revealed a novel c-Myc-TERT-p53 signaling pathway, expanding horizons for novel approaches promoting CNS axon regeneration.


2019 ◽  
Author(s):  
Nicholas M. Tran ◽  
Karthik Shekhar ◽  
Irene E. Whitney ◽  
Anne Jacobi ◽  
Inbal Benhar ◽  
...  

SummaryNeuronal types in the central nervous system differ dramatically in their resilience to injury or insults. Here we studied the selective resilience of mouse retinal ganglion cells (RGCs) following optic nerve crush (ONC), which severs their axons and leads to death of ~80% of RGCs within 2 weeks. To identify expression programs associated with differential resilience, we first used single-cell RNA-seq (scRNA-seq) to generate a comprehensive molecular atlas of 46 RGC types in adult retina. We then tracked their survival after ONC, characterized transcriptomic, physiological, and morphological changes that preceded degeneration, and identified genes selectively expressed by each type. Finally, using loss- and gain-of-function assays in vivo, we showed that manipulating some of these genes improved neuronal survival and axon regeneration following ONC. This study provides a systematic framework for parsing type-specific responses to injury, and demonstrates that differential gene expression can be used to reveal molecular targets for intervention.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Siqi Xiong ◽  
Ajay Kumar ◽  
Shenghe Tian ◽  
Eman E Taher ◽  
Enzhi Yang ◽  
...  

Glaucoma is a leading cause of irreversible blindness. In this study, we investigated if transplanted stem cells are able to rescue a glaucoma mouse model with transgenic myocilin Y437H mutation and explored the possible mechanisms. Human trabecular meshwork stem cells (TMSCs) were intracamerally transplanted which reduced mouse intraocular pressure, increased outflow facility, protected the retinal ganglion cells and preserved their function. TMSC transplantation also significantly increased the TM cellularity, promoted myocilin secretion from TM cells into the aqueous humor to reduce endoplasmic reticulum stress, repaired the TM tissue with extracellular matrix modulation and ultrastructural restoration. Co-culturing TMSCs with myocilin mutant TM cells in vitro promoted TMSCs differentiating into phagocytic functional TM cells. RNA sequencing revealed that TMSCs had upregulated genes related to TM regeneration and neuroprotection. Our results uncovered therapeutic potential of TMSCs for curing glaucoma and elucidated possible mechanisms by which TMSCs achieve the treatment effect.


2021 ◽  
Vol 13 ◽  
Author(s):  
Jingfei Xue ◽  
Yingting Zhu ◽  
Zhe Liu ◽  
Jicheng Lin ◽  
Yangjiani Li ◽  
...  

Neurodegenerative disorders are characterized by typical neuronal degeneration and axonal loss in the central nervous system (CNS). Demyelination occurs when myelin or oligodendrocytes experience damage. Pathological changes in demyelination contribute to neurodegenerative diseases and worsen clinical symptoms during disease progression. Glaucoma is a neurodegenerative disease characterized by progressive degeneration of retinal ganglion cells (RGCs) and the optic nerve. Since it is not yet well understood, we hypothesized that demyelination could play a significant role in glaucoma. Therefore, this study started with the morphological and functional manifestations of demyelination in the CNS. Then, we discussed the main mechanisms of demyelination in terms of oxidative stress, mitochondrial damage, and immuno-inflammatory responses. Finally, we summarized the existing research on the relationship between optic nerve demyelination and glaucoma, aiming to inspire effective treatment plans for glaucoma in the future.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 793 ◽  
Author(s):  
Stefano Gandolfi ◽  
Giorgio Marchini ◽  
Aldo Caporossi ◽  
Gianluca Scuderi ◽  
Livia Tomasso ◽  
...  

Glaucoma, a heterogeneous set of progressively degenerative optic neuropathies characterized by a loss of retinal ganglion cells (RGCs) and typical visual field deficits that can progress to blindness, is a neurodegenerative disease involving both ocular and visual brain structures. Although elevated intraocular pressure (IOP) remains the most important modifiable risk factor of primary open-angle glaucoma (POAG) and is the main therapeutic target in treating glaucoma, other factors that influence the disease course are involved and reaching the optimal IOP target does not stop the progression of glaucoma, as the visual field continues to narrow. In addition to a managed IOP, neuroprotection may be beneficial by slowing the progression of glaucoma and improving the visual defects. Citicoline (cytidine 5′-diphosphocholine) is a naturally occurring endogenous compound that has been investigated as a novel therapeutic agent for the management of glaucoma. Citicoline has demonstrated activity in a range of central neurodegenerative diseases, and experimental evidence suggests a it performs a neuromodulator and neuroprotective role on neuronal cells, including RGCs, associated with improvement in visual function, extension of the visual field and central benefits for the patient. This review aims to critically summarize the current evidence for the neuroprotective properties of citicoline in glaucoma.


2017 ◽  
Vol 68 (9) ◽  
pp. 2176-2180
Author(s):  
Anca Pantalon ◽  
Camelia Bogdanici ◽  
Daniela Constantinescu ◽  
Dorin Chiselita ◽  
Crengua Feraru

Typically in glaucoma the injuries in the retinal ganglion cells are irreversible and mostly due to high intraocular pressure. Currently there are also accepted pathogenic theories that go beyond high intraocular pressure in the area of neuro-inflammatory molecules, autoimmunity or vascular dysfunction. Yet it is very difficult to quantify these new pathogenic aspects as easy as in the case of visual field testing or optical coherence tomography. Our study tried to identify and compare levels of inflammatory cytokines IL-1Ra (Interleukin-1 receptor antagonist), IL-1a (Interleukin-1a), IL-1b (Interleukin-1b), IL-10 (Interleukin 10) and IFN-g(interferon-gamma) levels in open angle glaucoma and compare them to healthy subjects, matched for age and sex. The results proved an increased expression of inflammatory molecules with neurotoxicity capabilities in primary open angle glaucoma patients.


Sign in / Sign up

Export Citation Format

Share Document