scholarly journals Cold Atmospheric Pressure Plasma Treatment of Maize Grains—Induction of Growth, Enzyme Activities and Heat Shock Proteins

2021 ◽  
Vol 22 (16) ◽  
pp. 8509
Author(s):  
Ľudmila Holubová ◽  
Renáta Švubová ◽  
Ľudmila Slováková ◽  
Boris Bokor ◽  
Valéria Chobotová Kročková ◽  
...  

Zea mays L. is one of the most produced crops, and there are still parts of the world where maize is the basic staple food. To improve agriculture, mankind always looks for new, better methods of growing crops, especially in the current changing climatic conditions. Cold atmospheric pressure plasma (CAPP) has already showed its potential to enhance the culturing of crops, but it still needs more research for safe implementation into agriculture. In this work, it was shown that short CAPP treatment of maize grains had a positive effect on the vitality of grains and young seedlings, which may be connected to stimulation of antioxidant and lytic enzyme activities by short CAPP treatment. However, the prolonged treatment had a negative impact on the germination, growth, and production indexes. CAPP treatment caused the increased expression of genes for heat shock proteins HSP101 and HSP70 in the first two days after sowing. Using comet assay it was observed that shorter treatment times (30–120 s) did not cause DNA damage. Surface diagnostics of plasma-treated grains showed that plasma increases the hydrophilicity of the surface but does not damage the chemical bonds on the surface.

2021 ◽  
Vol 22 (6) ◽  
pp. 2833
Author(s):  
Mária Peťková ◽  
Renáta Švubová ◽  
Stanislav Kyzek ◽  
Veronika Medvecká ◽  
Ľudmila Slováková ◽  
...  

Climate change, environmental pollution and pathogen resistance to available chemical agents are part of the problems that the food industry has to face in order to ensure healthy food for people and livestock. One of the promising solutions to these problems is the use of cold atmospheric pressure plasma (CAPP). Plasma is suitable for efficient surface decontamination of seeds and food products, germination enhancement and obtaining higher yields in agricultural production. However, the plasma effects vary due to plasma source, treatment conditions and seed type. In our study, we tried to find the proper conditions for treatment of barley grains by diffuse coplanar surface barrier discharge, in which positive effects of CAPP, such as enhanced germination or decontamination effects, would be maximized and harmful effects, such as oxidation and genotoxic potential, minimized. Besides germination parameters, we evaluated DNA damage and activities of various germination and antioxidant enzymes in barley seedlings. Plasma exposure resulted in changes in germination parameters and enzyme activities. Longer exposures had also genotoxic effects. As such, our findings indicate that appropriate plasma exposure conditions need to be carefully optimized in order to preserve germination, oxidation balance and genome stability, should CAPP be used in agricultural practice.


Author(s):  
Kenneth A. Cornell ◽  
Amanda White ◽  
Adam Croteau ◽  
Jessica Carlson ◽  
Zeke Kennedy ◽  
...  

2011 ◽  
Vol 109 (12) ◽  
pp. 123302 ◽  
Author(s):  
J. S. Sousa ◽  
K. Niemi ◽  
L. J. Cox ◽  
Q. Th. Algwari ◽  
T. Gans ◽  
...  

2013 ◽  
Vol 647 ◽  
pp. 524-531
Author(s):  
Vinita Sharma ◽  
Katsuhiko Hosoi ◽  
Tamio Mori ◽  
Shin-ichi Kuroda

In this study, we conducted experiments to investigate the effectiveness of a non-equilibrium Ar-N2 plasma jet generated by a Cold Atmospheric Pressure Plasma Torch (CAPPLAT) at a sinusoidal voltage of 20 kV, frequency of 30 kHz with 10 slm of Ar gas and 100 sccm of N2 gas. Highly environmental stress resistant bacterial endospores of Bacillus subtilis, dried on an agar disc were exposed to the plasma discharge from the CAPPLAT for different durations. The viability of spores after plasma exposure was checked by counting CFUs by serial dilution method. We also measured the amount of released DPA (dipicolinic acid, pyridine-2, 6-dicarboxylic acid), which is exclusively found in endospore protoplast (cortex), to confirm the disintegration of the cortex. We could successfully inactivate a population of Bacillus endospores of about 1.0 × 107 to 4.0 × 107 spores/ml.


2015 ◽  
Vol 43 (3) ◽  
pp. 713-725 ◽  
Author(s):  
Marco Boselli ◽  
Vittorio Colombo ◽  
Matteo Gherardi ◽  
Romolo Laurita ◽  
Anna Liguori ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document