scholarly journals Identification of Abundant and Functional dodecaRNAs (doRNAs) Derived from Ribosomal RNA

2021 ◽  
Vol 22 (18) ◽  
pp. 9757 ◽  
Author(s):  
Marine Lambert ◽  
Abderrahim Benmoussa ◽  
Idrissa Diallo ◽  
Katheryn Ouellet-Boutin ◽  
Véronique Dorval ◽  
...  

Using a modified RNA-sequencing (RNA-seq) approach, we discovered a new family of unusually short RNAs mapping to ribosomal RNA 5.8S, which we named dodecaRNAs (doRNAs), according to the number of core nucleotides (12 nt) their members contain. Using a new quantitative detection method that we developed, we confirmed our RNA-seq data and determined that the minimal core doRNA sequence and its 13-nt variant C-doRNA (doRNA with a 5′ Cytosine) are the two most abundant doRNAs, which, together, may outnumber microRNAs. The C-doRNA/doRNA ratio is stable within species but differed between species. doRNA and C-doRNA are mainly cytoplasmic and interact with heterogeneous nuclear ribonucleoproteins (hnRNP) A0, A1 and A2B1, but not Argonaute 2. Reporter gene activity assays suggest that C-doRNA may function as a regulator of Annexin II receptor (AXIIR) expression. doRNAs are differentially expressed in prostate cancer cells/tissues and may control cell migration. These findings suggest that unusually short RNAs may be more abundant and important than previously thought.

2021 ◽  
Vol 7 (3) ◽  
pp. 59
Author(s):  
Marine Lambert ◽  
Abderrahim Benmoussa ◽  
Patrick Provost

Recently, we discovered a new family of unusually short RNAs mapping to 5.8S ribosomal RNA (rRNA) and which we named dodecaRNAs (doRNAs), according to the number of core nucleotides (12 nt) their members contain. To confirm these small RNA-sequencing (RNA-Seq) data, validate the existence of the two overly abundant doRNAs—the minimal core 12-nt doRNA sequence and its + 1-nt variant bearing a 5′ Cytosine, C-doRNA—and streamline their analysis, we developed a new specific and sensitive splinted 5′ ligation reverse transcription (RT)-quantitative polymerase chain reaction (qPCR) method. This method is based on a splint-assisted ligation of an adapter to the 5′ end of doRNAs, followed by RT-qPCR amplification and quantitation. Our optimized protocol, which may discriminate between doRNA, C-doRNA, mutated and precursor sequences, can accurately detect as low as 240 copies and is quantitatively linear over a range of 7 logs. This method provides a unique tool to expand and facilitate studies exploring the molecular and cellular biology of RNA species shorter than microRNAs.


2021 ◽  
Vol 1 (6) ◽  
Author(s):  
Amber Baldwin ◽  
Adam R. Morris ◽  
Neelanjan Mukherjee
Keyword(s):  

Author(s):  
Marine Lambert ◽  
Abderrahim Benmoussa ◽  
Patrick Provost

The advent of RNA-sequencing (RNA-Seq) technologies has markedly improved our knowledge and expanded the compendium of small non-coding RNAs, most of which derive from the processing of longer RNA precursors. In this review article, we will discuss about the biogenesis and function of small non-coding RNAs derived from eukaryotic ribosomal RNA (rRNA), called rRNA fragments (rRFs), and their potential role(s) as regulator of gene expression. This relatively new class of ncRNAs remained poorly investigated and underappreciated until recently, due mainly to the a priori exclusion of rRNA sequences—because of their overabundance—from RNA-Seq datasets. The situation surrounding rRFs resembles that of microRNAs (miRNAs), which used to be readily discarded from further analyses, for more than five decades, because we could not believe that RNA of such a short length could bear biological significance. As if we had not yet learned our lesson not to restrain our investigative, scientific mind from challenging widely accepted beliefs or dogmas, and from looking for the hidden treasures in the most unexpected places.


2011 ◽  
Vol 8 (11) ◽  
pp. iii-iv ◽  
Author(s):  
Vladimir Benes ◽  
Jonathon Blake ◽  
Ken Doyle
Keyword(s):  

2020 ◽  
Author(s):  
Xinyue Li ◽  
Guangyu Ji ◽  
Juan Zhou ◽  
Jingyi Du ◽  
Xian Li ◽  
...  

Abstract Objective Early neural tube development in the embryo includes neural induction and self-renewal of neural stem cells (NSCs). The abnormal of neural tube development could lead to neural tube defects. The research on the mechanism of neural induction is the key to reveal the pathogenesis of the abnormal of neural tube. Though studies have confirmed a genetic component, the responsible mechanisms for the abnormal of neural tube are still largely unknown. Polycomb repressive complex 1 (PRC1) plays an important role in regulating early embryonic development, and has been sub-classified into six major complexes based on the presence of a Pcgf subunit. Pcgf1, as one of six Pcgf paralogs, is an important requirement in early embryonic brain development. Here, we intended to investigate the role and mechanism of Pcgf1 in early neural tube development of zebrafish embryos. Material and methods Morpholino (MO) antisense oligonucleotides were used to construct a Pcgf1 loss-of function zebrafish model. We analyzed the phenotype of zebrafish embryos and the expression of related genes in the process of neural induction by in situ hybridization, immunolabelling and RNA-sEq. The regulation of histone modifications on gene was detected by western blot and chromatin immunoprecipitation. Results In this study, we found that zebrafish embryos exhibited small head and reduced or even absence of telencephalon after inhibiting the expression of Pcgf1. Moreover, the neural induction process of zebrafish embryos was abnormal, and the subsequent NSCs self-renewal was inhibited under the inhibition of Pcgf1. RNA-seq and gene ontology (GO) analysis identified that the differentially expressed genes were enriched in many functional categories which related to the development phenotype. Finally, our results showed that Pcgf1 regulated the trimethylation of histone H3K27 in the Ngn1 and Otx2 promoter regions, and the levels of H3K4me3 at the promoters of Pou5f3 and Nanog. Conclusion Together, our data for the first time demonstrate that Pcgf1 plays an essential role in early neural induction phase through histone methylation in neural tube development. Our findings reveal a critical context-specific function for Pcgf1 in directing PRC1 to control cell fate.


Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 360
Author(s):  
Bhavana Talluri ◽  
Kshitij Amar ◽  
Michael Saul ◽  
Tasnim Shireen ◽  
Vjollca Konjufca ◽  
...  

Soft 3D-fibrin-gel selected tumor repopulating cells (TRCs) from the B16F1 melanoma cell line exhibit extraordinary self-renewal and tumor-regeneration capabilities. However, their biomarkers and gene regulatory features remain largely unknown. Here, we utilized the next-generation sequencing-based RNA sequencing (RNA-seq) technique to discover novel biomarkers and active gene regulatory features of TRCs. Systems biology analysis of RNA-seq data identified differentially expressed gene clusters, including the cell adhesion cluster, which subsequently identified highly specific and novel biomarkers, such as Col2a1, Ncam1, F11r, and Negr1. We validated the expression of these genes by real-time qPCR. The expression level of Col2a1 was found to be relatively low in TRCs but twenty-fold higher compared to the parental control cell line, thus making the biomarker very specific for TRCs. We validated the COL2A1 protein by immunofluorescence microscopy, showing a higher expression of COL2A1 in TRCs compared to parental control cells. KEGG pathway analysis showed the JAK/STAT, hypoxia, and Akt signaling pathways to be active in TRCs. Besides, the aerobic glycolysis pathway was found to be very active, indicating a typical Warburg Effect on highly tumorigenic cells. Together, our study revealed highly specific biomarkers and active cell signaling pathways of melanoma TRCs that can potentially target and neutralize TRCs.


2020 ◽  
Vol 6 (3) ◽  
pp. 32 ◽  
Author(s):  
Anna R. Dahlgren ◽  
Erica Y. Scott ◽  
Tamer Mansour ◽  
Erin N. Hales ◽  
Pablo J. Ross ◽  
...  

Long non-coding RNAs (lncRNAs) are untranslated regulatory transcripts longer than 200 nucleotides that can play a role in transcriptional, post-translational, and epigenetic regulation. Traditionally, RNA-sequencing (RNA-seq) libraries have been created by isolating transcriptomic RNA via poly-A+ selection. In the past 10 years, methods to perform ribosomal RNA (rRNA) depletion of total RNA have been developed as an alternative, aiming for better coverage of whole transcriptomic RNA, both polyadenylated and non-polyadenylated transcripts. The purpose of this study was to determine which library preparation method is optimal for lncRNA investigations in the horse. Using liver and cerebral parietal lobe tissues from two healthy Thoroughbred mares, RNA-seq libraries were prepared using standard poly-A+ selection and rRNA-depletion methods. Averaging the two biologic replicates, poly-A+ selection yielded 327 and 773 more unique lncRNA transcripts for liver and parietal lobe, respectively. More lncRNA were found to be unique to poly-A+ selected libraries, and rRNA-depletion identified small nucleolar RNA (snoRNA) to have a higher relative expression than in the poly-A+ selected libraries. Overall, poly-A+ selection provides a more thorough identification of total lncRNA in equine tissues while rRNA-depletion may allow for easier detection of snoRNAs.


Sign in / Sign up

Export Citation Format

Share Document