scholarly journals Differential Marker Expression between Keratinocyte Stem Cells and Their Progeny Generated from a Single Colony

2021 ◽  
Vol 22 (19) ◽  
pp. 10810
Author(s):  
Dema Ali ◽  
Dana Alhattab ◽  
Hanan Jafar ◽  
Malak Alzubide ◽  
Nour Sharar ◽  
...  

The stemness in keratinocyte stem cells (KSCs) is determined by their gene expression patterns. KSCs are crucial in maintaining epidermal homeostasis and wound repair and are widely used candidates for therapeutic applications. Although several studies have reported their positive identifiers, unique biomarkers for KSCs remain elusive. Here, we aim to identify potential candidate stem cell markers. Human epidermal keratinocytes (HEKs) from neonatal foreskin tissues were isolated and cultured. Single-cell clonal analysis identified and characterized three types of cells: KSCs (holoclones), transient amplifying cells (TACs; meroclones), and differentiated cells (DSCs; paraclones). The clonogenic potential of KSCs demonstrated the highest proliferation potential of KSCs, followed by TACs and DSCs, respectively. Whole-transcriptome analysis using microarray technology unraveled the molecular signatures of these cells. These results were validated by quantitative real-time polymerase chain reaction and flow cytometry analysis. A total of 301 signature upregulated and 149 downregulated differentially expressed genes (DEGs) were identified in the KSCs, compared to TACs and DSCs. Furthermore, DEG analyses revealed new sets of genes related to cell proliferation, cell adhesion, surface makers, and regulatory factors. In conclusion, this study provides a useful source of information for the identification of potential SC-specific candidate markers.

2018 ◽  
Vol 20 (6) ◽  
pp. 356-364 ◽  
Author(s):  
Yu-Hua Yang ◽  
Ru-Zhi Zhang ◽  
Sai Cheng ◽  
Bin Xu ◽  
Ting Tian ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mariko Moriyama ◽  
Shunya Sahara ◽  
Kaori Zaiki ◽  
Ayumi Ueno ◽  
Koichi Nakaoji ◽  
...  

AbstractWound healing is regulated by complex interactions between the keratinocytes and other cell types including fibroblasts. Recently, adipose-derived mesenchymal stromal/stem cells (ASCs) have been reported to influence wound healing positively via paracrine involvement. However, their roles in keratinocytes are still obscure. Therefore, investigation of the precise effects of ASCs on keratinocytes in an in vitro culture system is required. Our recent data indicate that the epidermal equivalents became thicker on a collagen vitrigel membrane co-cultured with human ASCs (hASCs). Co-culturing the human primary epidermal keratinocytes (HPEK) with hASCs on a collagen vitrigel membrane enhanced their abilities for cell proliferation and adhesion to the membrane but suppressed their differentiation suggesting that hASCs could maintain the undifferentiated status of HPEK. Contrarily, the effects of co-culture using polyethylene terephthalate or polycarbonate membranes for HPEK were completely opposite. These differences may depend on the protein permeability and/or structure of the membrane. Taken together, our data demonstrate that hASCs could be used as a substitute for fibroblasts in skin wound repair, aesthetic medicine, or tissue engineering. It is also important to note that a co-culture system using the collagen vitrigel membrane allows better understanding of the interactions between the keratinocytes and ASCs.


2018 ◽  
Vol 19 (10) ◽  
pp. 3072 ◽  
Author(s):  
Andrzej Slominski ◽  
Tae-Kang Kim ◽  
Zorica Janjetovic ◽  
Anna Brożyna ◽  
Michal Żmijewski ◽  
...  

A novel pathway of vitamin D activation by CYP11A has previously been elucidated. To define the mechanism of action of its major dihydroxy-products, we tested the divergence and overlap between the gene expression profiles of human epidermal keratinocytes treated with either CYP11A1-derived 20,23(OH)2D3 or classical 1,25(OH)2D3. Both secosteroids have significant chemical similarity with the only differences being the positions of the hydroxyl groups. mRNA was isolated and examined by microarray analysis using Illumina’s HumanWG-6 chip/arrays and subsequent bioinformatics analyses. Marked differences in the up- and downregulated genes were observed between 1,25(OH)2D3- and 20,23(OH)2D3-treated cells. Hierarchical clustering identified both distinct, opposite and common (overlapping) gene expression patterns. CYP24A1 was a common gene strongly activated by both compounds, a finding confirmed by qPCR. Ingenuity pathway analysis identified VDR/RXR signaling as the top canonical pathway induced by 1,25(OH)2D3. In contrast, the top canonical pathway induced by 20,23(OH)2D3 was AhR, with VDR/RXR being the second nuclear receptor signaling pathway identified. QPCR analyses validated the former finding by revealing that 20,23(OH)2D3 stimulated CYP1A1 and CYP1B1 gene expression, effects located downstream of AhR. Similar stimulation was observed with 20(OH)D3, the precursor to 20,23(OH)2D3, as well as with its downstream metabolite, 17,20,23(OH)3D3. Using a Human AhR Reporter Assay System we showed marked activation of AhR activity by 20,23(OH)2D3, with weaker stimulation by 20(OH)D3. Finally, molecular modeling using an AhR LBD model predicted vitamin D3 hydroxyderivatives to be good ligands for this receptor. Thus, our microarray, qPCR, functional studies and molecular modeling indicate that AhR is the major receptor target for 20,23(OH)2D3, opening an exciting area of investigation on the interaction of different vitamin D3-hydroxyderivatives with AhR and the subsequent downstream activation of signal transduction pathways in a cell-type-dependent manner.


Marine Drugs ◽  
2019 ◽  
Vol 17 (7) ◽  
pp. 424
Author(s):  
Sajee Thaweekitphathanaphakdee ◽  
Pithi Chanvorachote ◽  
Sagaw Prateepchinda ◽  
Mattaka Khongkow ◽  
Apirada Sucontphunt

Stem cell activities in human tissues are critical for tissue integrity and function. Maintaining keratinocyte stem cells (KSCs) stemness helps sustain healthy skin by supporting keratinocyte renewal, involving the formation of epidermal barriers. In this study, abalone collagen (AC) extracts with molecular weights of 3 kDa (AC 1) and 300 kDa (AC 2) were compared to the epidermal growth factor (EGF) for their effects on cell proliferation, cell migration (wound healing), spheroid formation, and the expression level of stem cell markers on human keratinocytes (HaCaT cells). Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell proliferation was quantified by ATP and DNA content analysis and Sulforhodamine B (SRB) assays. Cell migration assay was determined using the scratch wound healing test. Spheroid formation was evaluated and the expression level of stem cell markers was investigated by western blot analysis. The results showed that AC 1 at the concentration of 100 µg/mL could stimulate HaCaT cell proliferation, migration, spheroid formation, and the expression level of stem cell markers (keratin 19, β-catenin, ALDH1A1) compared to the control. In conclusion, a smaller molecular weight of abalone collagen extract exhibits a better effect on keratinocytes proliferation, migration, and stemness, which could be a potential active ingredient in cosmeceutical products.


Development ◽  
1998 ◽  
Vol 125 (15) ◽  
pp. 2915-2923 ◽  
Author(s):  
T. Kunisada ◽  
H. Yoshida ◽  
H. Yamazaki ◽  
A. Miyamoto ◽  
H. Hemmi ◽  
...  

Mutations at the murine dominant white spotting (KitW) and steel (MgfSl) loci, encoding c-Kit receptor kinase and its ligand respectively, exert developmental defects on hematopoietic cells, melanocytes, germ cells and interstitial cells of Cajal. The expression patterns of steel factor (SLF) observed in the skin and gonads suggest that SLF mediates a migratory or a chemotactic signal for c-Kit-expressing stem cells (melanocyte precursors and primordial germ cells). By targeting expression of SLF to epidermal keratinocytes in mice, we observed extended distribution of melanocytes in a number of sites including oral epithelium and footpads where neither melanocytes nor their precursors are normally detected. In addition, enlarged pigmented spots of KitW and other spotting mutant mice were observed in the presence of the SLF transgene. These results provide direct evidence that SLF stimulates migration of melanocytes in vivo. We also present data suggesting that SLF does not simply support survival and proliferation of melanocytes but also promotes differentiation of these cells. Unexpectedly, melanocyte stem cells independent of the c-Kit signal were maintained in the skin of the SLF transgenic mice. After the elimination of c-Kit-dependent melanoblasts by function-blocking anti-c-Kit antibody, these stem cells continued to proliferate and differentiate into mature melanocytes. These melanoblasts are able to migrate to cover most of the epidermis after several months. The SLF transgenic mice described in this report will be useful in the study of melanocyte biology.


2020 ◽  
pp. 1-14
Author(s):  
Mouffouk Fouzi ◽  
Manjula Thimma ◽  
Mohammad BinSabt ◽  
Ali A. Husain ◽  
Sihem Aouabdi

BACKGROUND: Merging stem cells with biomimetic materials represent an attractive approach to tissue engineering. The development of an alternative scaffold with the ability to mimic the extracellular matrix, and the 3D gradient preventing any alteration in cell metabolism or in their gene expression patterns, would have many medical applications. OBJECTIVE: In this study, we introduced the use of RGD (Arg-Gly-Asp) bio-conjugated cotton to promote the growth and proliferation of mesenchymal stem cells (MSCs). METHODS: We measured the expression of stem cell markers and adhesion markers with Q-PCR and analyzed the transcriptomic. The results obtained showed that the MSCs, when cultured with bio-conjugated cotton fibers, form aggregates around the fibers while proliferating. The seeded MSCs with cotton fibers proliferated in a similar fashion to the cells seeded on the monolayer (population doubling level 1.88 and 2.19 respectively). RESULTS: The whole genome sequencing of cells adhering to these cotton fibers and cells adhering to the cell culture dish showed differently expressed genes and pathways in both populations. However, the expression of the stem cell markers (Oct4, cKit, CD105) and cell adhesion markers (CD29, HSPG2 and CD138), when examined with quantitative RT-PCR, was maintained in both cell populations. CONCLUSION: These results clearly show the ability of the cotton fibers to promote MSCs growth and proliferation in a 3D structure mimicking the in vivo environment without losing their stem cell phenotype.


2020 ◽  
Author(s):  
Wenxiu Ning ◽  
Andrew Muroyama ◽  
Hua Li ◽  
Terry Lechler

AbstractBasal stem cells fuel development, homeostasis, and regeneration of the epidermis. The proliferation and fate decisions of these cells are highly regulated by their microenvironment, including the basement membrane and underlying mesenchymal cells. Basal progenitors give rise to differentiated progeny that serve an essential role in generating the epidermal barrier. Here, we present data that differentiated progeny also regulate the proliferation, differentiation, and migration of basal progenitor cells. Using two distinct mouse lines, we found that increasing contractility of differentiated cells resulted in non-cell autonomous hyperproliferation of stem cells and prevented their commitment to a hair follicle lineage. These phenotypes were rescued by pharmacological inhibitors of contractility. Live-imaging revealed that increasing the contractility of differentiated cells resulted in stabilization of adherens junctions and impaired movement of basal progenitors during hair placode morphogenesis, as well as a defect in migration of melanoblasts. These data suggest that intra-tissue tension regulates stem cell proliferation, fate decisions and migration, similar to the known roles of extracellular matrix rigidity. Additionally, this work demonstrates that differentiated epidermal keratinocytes are a component of the stem cell niche that regulates development and homeostasis of the skin.


2014 ◽  
Vol 11 (95) ◽  
pp. 20140009 ◽  
Author(s):  
Keith Task ◽  
Antonio D'Amore ◽  
Satish Singh ◽  
Joe Candiello ◽  
Maria Jaramillo ◽  
...  

Stem cells receive numerous cues from their associated substrate that help to govern their behaviour. However, identification of influential substrate characteristics poses difficulties because of their complex nature. In this study, we developed an integrated experimental and systems level modelling approach to investigate and identify specific substrate features influencing differentiation of mouse embryonic stem cells (mESCs) on a model fibrous substrate, fibrin. We synthesized a range of fibrin gels by varying fibrinogen and thrombin concentrations, which led to a range of substrate stiffness and microstructure. mESCs were cultured on each of these gels, and characterization of the differentiated cells revealed a strong influence of substrate modulation on gene expression patterning. To identify specific substrate features influencing differentiation, the substrate microstructure was quantified by image analysis and correlated with stem cell gene expression patterns using a statistical model. Significant correlations were observed between differentiation and microstructure features, specifically fibre alignment. Furthermore, this relationship occurred in a lineage-specific manner towards endoderm. This systems level approach allows for identification of specific substrate features from a complex material which are influential to cellular behaviour. Such analysis may be effective in guiding the design of scaffolds with specific properties for tissue engineering applications.


1986 ◽  
Vol 103 (1) ◽  
pp. 41-48 ◽  
Author(s):  
A S Ma ◽  
T T Sun

We have prepared a monoclonal antibody, AE11, that recognizes specifically a 195-kD protein (pI 5.4) of human keratinocytes. This antigen constitutes approximately 0.01-0.1% of total protein in keratinocytes of skin, esophagus, and cornea, and is readily detectable in these cells by immunofluorescent staining and immunoblotting. However, it is barely detectable in MCF mammary carcinoma cells and HeLa cells, and is undetectable in nonepithelial cell types. Results from serial extraction experiments have shown that this protein exists in two distinct pools: a Tris-soluble, and a Tris-insoluble but urea- or SDS-soluble one. The distribution of the 195-kD protein between these two pools appears to be differentiation-related, since relatively undifferentiated cells selected by a low-calcium medium contain primarily the soluble form, while highly differentiated cells contain mainly the insoluble form. Data from immunofluorescent staining and trypsin-sensitivity experiments suggest that the soluble form is cytoplasmic, whereas the insoluble form is submembranously located at the cell periphery of upper, differentiated cells. The insoluble, cell peripheral form of the 195-kD antigen increases progressively during epidermal differentiation; its insolubility appears to be related to the formation of disulfide-bond(s). These results indicate that the 195-kD protein, which has recently been suggested to be involved in cornified envelope formation (Simon, M., and H. Green, 1985, Cell, 36:827-834), undergoes significant changes in its solubility characteristics and intracellular location during keratinocyte maturation.


Sign in / Sign up

Export Citation Format

Share Document